47 research outputs found

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Analysis of speech and other sounds

    Get PDF
    This thesis comprises a study of various types of signal processing techniques, applied to the tasks of extracting information from speech, cough, and dolphin sounds. Established approaches to analysing speech sounds for the purposes of low data rate speech encoding, and more generally to determine the characteristics of the speech signal, are reviewed. Two new speech processing techniques, shift-and-add and CLEAN (which have previously been applied in the field of astronomical image processing), are developed and described in detail. Shift-and-add is shown to produce a representation of the long-term "average" characteristics of the speech signal. Under certain simplifying assumptions, this can be equated to the average glottal excitation. The iterative deconvolution technique called CLEAN is employed to deconvolve the shift-and-add signal from the speech signal. Because the resulting "CLEAN" signal has relatively few non-zero samples, it can be directly encoded at a low data rate. The performance of a low data rate speech encoding scheme that takes advantage of this attribute of CLEAN is examined in detail. Comparison with the multi-pulse LP C approach to speech coding shows that the new method provides similar levels of performance at medium data rates of about 16kbit/s. The changes that occur in the character of a person's cough sounds when that person is afflicted with asthma are outlined. The development and implementation of a micro-computer-based cough sound analysis system, designed to facilitate the ongoing study of these sounds, is described. The system performs spectrographic analysis on the cough sounds. A graphical user interface allows the sound waveforms and spectra to be displayed and examined in detail. Preliminary results are presented, which indicate that the spectral content of cough sounds are changed by asthma. An automated digital approach to studying the characteristics of Hector's dolphin vocalisations is described. This scheme characterises the sounds by extracting descriptive parameters from their time and frequency domain envelopes. The set of parameters so obtained from a sample of click sequences collected from free-ranging dolphins is analysed by principal component analysis. Results are presented which indicate that Hector's dolphins produce only a small number of different vocal sounds. In addition to the statistical analysis, several of the clicks, which are assumed to be used for echo-location, are analysed in terms of their range-velocity ambiguity functions. The results suggest that Hector's dolphins can distinguish targets separated in range by about 2cm, but are unable to separate targets that differ only in their velocity

    Symmetry and Complexity

    Get PDF
    Symmetry and complexity are the focus of a selection of outstanding papers, ranging from pure Mathematics and Physics to Computer Science and Engineering applications. This collection is based around fundamental problems arising from different fields, but all of them have the same task, i.e. breaking the complexity by the symmetry. In particular, in this Issue, there is an interesting paper dealing with circular multilevel systems in the frequency domain, where the analysis in the frequency domain gives a simple view of the system. Searching for symmetry in fractional oscillators or the analysis of symmetrical nanotubes are also some important contributions to this Special Issue. More papers, dealing with intelligent prognostics of degradation trajectories for rotating machinery in engineering applications or the analysis of Laplacian spectra for categorical product networks, show how this subject is interdisciplinary, i.e. ranging from theory to applications. In particular, the papers by Lee, based on the dynamics of trapped solitary waves for special differential equations, demonstrate how theory can help us to handle a practical problem. In this collection of papers, although encompassing various different fields, particular attention has been paid to the common task wherein the complexity is being broken by the search for symmetry

    Perfil metabolómico de los tumores neuroendocrinos de origen gastrointestinal y pulmonar : papel pronóstico y relevancia biológica

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Medicina, leída el 11-02-2022Reprogrammed metabolism encompasses the capacity of cells to respond or adapt their metabolic signalling to support and enable cell survival in unfavourable or hostile conditions. This ability is enhanced in cancer cells to improve their adaptive phenotype and maintain both viability and uncontrolled proliferation. Metabolic flexibility is therefore one of the key hallmarks of cancer, although pathways involved in the metabolic plasticity of each cancer type remain to be elucidated. Metabolites are the final products of this adaptation, reflecting the aberrant changes in the genomic, transcriptomic and proteomic variability of tumors, and therefore provide useful biological and clinical information on cancer biology. This, together with the fact that metabolomics can be easily performed in readily accessible biological samples (i.e. plasma, urine), makes metabolic profiling of cancer patients a promising tool to characterize the tumor phenotype and identify novel biomarkers of potential clinical use...La reprogramación del metabolismo permite a las células para responder o adaptar su regulación metabólica para permitir la supervivencia celular en condiciones desfavorables u hostiles. Esta capacidad aumenta en las células cancerosas para mejorar su fenotipo adaptativo y mantener tanto la viabilidad como la proliferación incontrolada. Así, la flexibilidad metabólica es una de las características distintivas del cáncer, aunque todavía quedan por dilucidar las vías implicadas en la plasticidad metabólica de cada tipo de tumor. Los metabolitos son los productos finales de esta adaptación, que en último término reflejan los cambios aberrantes que sufren los tumores reflejando la variabilidad genómica, transcriptómica y proteómica de los mismos y, por lo tanto, proporcionando información relevante sobre la biología del cáncer. Además, el estudio de los perfiles de metabolitos (metabolómica) puede realizarse fácilmente en muestras biológicas de fácil acceso (plasma, orina), constituyendo así una herramienta prometedora para caracterizar el fenotipo tumoral e identificar nuevos biomarcadores de potencial utilidad clínica...Fac. de MedicinaTRUEunpu
    corecore