41 research outputs found

    2D Watermarking: Non Conventional Approaches

    Get PDF

    A Data Hiding Method Based on Partition Variable Block Size with Exclusive-or Operation on Binary Image

    Get PDF
    In this paper, we propose a high capacity data hiding method applying in binary images. Since a binary image has only two colors, black or white, it is hard to hide data imperceptible. The capacities and imperception are always in a trade-off problem. Before embedding we shuffle the secret data by a pseudo-random number generator to keep more secure. We divide the host image into several non-overlapping (2n+1) by (2n+1) sub-blocks in an M by N host image as many as possible, where n can equal 1, 2, 3 , …, or min(M,N). Then we partition each sub-block into four overlapping (n+1) by (n+1) sub-blocks. We skip the all blacks or all whites in each (2n+1) by (2n+1) sub-blocks. We consider all four (n+1) by (n+1) sub-blocks to check the XOR between the non overlapping parts and center pixel of the (2n+1) by (2n+1) sub-block, it embed n 2 bits in each (n+1) by (n+1) sub-block, totally are 4*n 2 . The entire host image can be embedded 4×n 2×M/(2n+1)×N/(2n+1) bits. The extraction way is simply to test the XOR between center pixel with their non-overlapping part of each sub-block. All embedding bits are collected and shuffled back to the original order. The adaptive means the partitioning sub-block may affect the capacities and imperception that we want to select. The experimental results show that the method provides the large embedding capacity and keeps imperceptible and reveal the host image lossless

    Preventing Unauthorized AI Over-Analysis by Medical Image Adversarial Watermarking

    Full text link
    The advancement of deep learning has facilitated the integration of Artificial Intelligence (AI) into clinical practices, particularly in computer-aided diagnosis. Given the pivotal role of medical images in various diagnostic procedures, it becomes imperative to ensure the responsible and secure utilization of AI techniques. However, the unauthorized utilization of AI for image analysis raises significant concerns regarding patient privacy and potential infringement on the proprietary rights of data custodians. Consequently, the development of pragmatic and cost-effective strategies that safeguard patient privacy and uphold medical image copyrights emerges as a critical necessity. In direct response to this pressing demand, we present a pioneering solution named Medical Image Adversarial watermarking (MIAD-MARK). Our approach introduces watermarks that strategically mislead unauthorized AI diagnostic models, inducing erroneous predictions without compromising the integrity of the visual content. Importantly, our method integrates an authorization protocol tailored for legitimate users, enabling the removal of the MIAD-MARK through encryption-generated keys. Through extensive experiments, we validate the efficacy of MIAD-MARK across three prominent medical image datasets. The empirical outcomes demonstrate the substantial impact of our approach, notably reducing the accuracy of standard AI diagnostic models to a mere 8.57% under white box conditions and 45.83% in the more challenging black box scenario. Additionally, our solution effectively mitigates unauthorized exploitation of medical images even in the presence of sophisticated watermark removal networks. Notably, those AI diagnosis networks exhibit a meager average accuracy of 38.59% when applied to images protected by MIAD-MARK, underscoring the robustness of our safeguarding mechanism

    Data wiping tool: ByteEditor Technique

    Get PDF
    This Wiping Tool is an anti-forensic tool that is built to wipe data permanently from laptop’s storage. This tool is capable to ensure the data from being recovered with any recovery tools. The objective of building this wiping tool is to maintain the confidentiality and integrity of the data from unauthorized access. People tend to delete the file in normal way, however, the file face the risk of being recovered. Hence, the integrity and confidentiality of the deleted file cannot be protected. Through wiping tools, the files are overwritten with random strings to make the files no longer readable. Thus, the integrity and the confidentiality of the file can be protected. Regarding wiping tools, nowadays, lots of wiping tools face issue such as data breach because the wiping tools are unable to delete the data permanently from the devices. This situation might affect their main function and a threat to their users. Hence, a new wiping tool is developed to overcome the problem. A new wiping tool named Data Wiping tool is applying two wiping techniques. The first technique is Randomized Data while the next one is enhancing wiping technique, known as ByteEditor. ByteEditor is a combination of two different techniques, byte editing and byte deletion. With the implementation of Object�Oriented methodology, this wiping tool is built. This methodology consists of analyzing, designing, implementation and testing. The tool is analyzed and compared with other wiping tools before the designing of the tool start. Once the designing is done, implementation phase take place. The code of the tool is created using Visual Studio 2010 with C# language and being tested their functionality to ensure the developed tool meet the objectives of the project. This tool is believed able to contribute to the development of wiping tools and able to solve problems related to other wiping tools

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã
    corecore