103 research outputs found

    Beamforming through regularized inverse problems in ultrasound medical imaging

    Get PDF
    Beamforming (BF) in ultrasound (US) imaging has significant impact on the quality of the final image, controlling its resolution and contrast. Despite its low spatial resolution and contrast, delay-and-sum (DAS) is still extensively used nowadays in clinical applications, due to its real-time capabilities. The most common alternatives are minimum variance (MV) method and its variants, which overcome the drawbacks of DAS, at the cost of higher computational complexity that limits its utilization in real-time applications. In this paper, we propose to perform BF in US imaging through a regularized inverse problem based on a linear model relating the reflected echoes to the signal to be recovered. Our approach presents two major advantages: 1) its flexibility in the choice of statistical assumptions on the signal to be beamformed (Laplacian and Gaussian statistics are tested herein) and 2) its robustness to a reduced number of pulse emissions. The proposed framework is flexible and allows for choosing the right tradeoff between noise suppression and sharpness of the resulted image. We illustrate the performance of our approach on both simulated and experimental data, with in vivo examples of carotid and thyroid. Compared with DAS, MV, and two other recently published BF techniques, our method offers better spatial resolution, respectively contrast, when using Laplacian and Gaussian priors

    Computational Multispectral Endoscopy

    Get PDF
    Minimal Access Surgery (MAS) is increasingly regarded as the de-facto approach in interventional medicine for conducting many procedures this is due to the reduced patient trauma and consequently reduced recovery times, complications and costs. However, there are many challenges in MAS that come as a result of viewing the surgical site through an endoscope and interacting with tissue remotely via tools, such as lack of haptic feedback; limited field of view; and variation in imaging hardware. As such, it is important best utilise the imaging data available to provide a clinician with rich data corresponding to the surgical site. Measuring tissue haemoglobin concentrations can give vital information, such as perfusion assessment after transplantation; visualisation of the health of blood supply to organ; and to detect ischaemia. In the area of transplant and bypass procedures measurements of the tissue tissue perfusion/total haemoglobin (THb) and oxygen saturation (SO2) are used as indicators of organ viability, these measurements are often acquired at multiple discrete points across the tissue using with a specialist probe. To acquire measurements across the whole surface of an organ one can use a specialist camera to perform multispectral imaging (MSI), which optically acquires sequential spectrally band limited images of the same scene. This data can be processed to provide maps of the THb and SO2 variation across the tissue surface which could be useful for intra operative evaluation. When capturing MSI data, a trade off often has to be made between spectral sensitivity and capture speed. The work in thesis first explores post processing blurry MSI data from long exposure imaging devices. It is of interest to be able to use these MSI data because the large number of spectral bands that can be captured, the long capture times, however, limit the potential real time uses for clinicians. Recognising the importance to clinicians of real-time data, the main body of this thesis develops methods around estimating oxy- and deoxy-haemoglobin concentrations in tissue using only monocular and stereo RGB imaging data

    Medical Imaging of Microrobots: Toward In Vivo Applications

    Get PDF
    Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications

    Across frequency processes involved in auditory detection of coloration

    Get PDF
    corecore