75 research outputs found

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    Structured Sparsity Models for Reverberant Speech Separation

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition

    Towards Improved Room Impulse Response Estimation for Speech Recognition

    Full text link
    We propose to characterize and improve the performance of blind room impulse response (RIR) estimation systems in the context of a downstream application scenario, far-field automatic speech recognition (ASR). We first draw the connection between improved RIR estimation and improved ASR performance, as a means of evaluating neural RIR estimators. We then propose a GAN-based architecture that encodes RIR features from reverberant speech and constructs an RIR from the encoded features, and uses a novel energy decay relief loss to optimize for capturing energy-based properties of the input reverberant speech. We show that our model outperforms the state-of-the-art baselines on acoustic benchmarks (by 72% on the energy decay relief and 22% on an early-reflection energy metric), as well as in an ASR evaluation task (by 6.9% in word error rate)

    Speech Dereverberation Based on Multi-Channel Linear Prediction

    Get PDF
    Room reverberation can severely degrade the auditory quality and intelligibility of the speech signals received by distant microphones in an enclosed environment. In recent years, various dereverberation algorithms have been developed to tackle this problem, such as beamforming and inverse filtering of the room transfer function. However, this kind of methods relies heavily on the precise estimation of either the direction of arrival (DOA) or room acoustic characteristics. Thus, their performance is very much limited. A more promising category of dereverberation algorithms has been developed based on multi-channel linear predictor (MCLP). This idea was first proposed in time domain where speech signal is highly correlated in a short period of time. To ensure a good suppression of the reverberation, the prediction filter length is required to be longer than the reverberation time. As a result, the complexity of this algorithm is often unacceptable because of large covariance matrix calculation. To overcome this disadvantage, this thesis focuses on the MCLP dereverberation methods performed in the short-time Fourier transform (STFT) domain. Recently, the weighted prediction error (WPE) algorithm has been developed and widely applied to speech dereverberation. In WPE algorithm, MCLP is used in the STFT domain to estimate the late reverberation components from previous frames of the reverberant speech. The enhanced speech is obtained by subtracting the late reverberation from the reverberant speech. Each STFT coefficient is assumed to be independent and obeys Gaussian distribution. A maximum likelihood (ML) problem is formulated in each frequency bin to calculate the predictor coefficients. In this thesis, the original WPE algorithm is improved in two aspects. First, two advanced statistical models, generalized Gaussian distribution (GGD) and Laplacian distribution, are employed instead of the classic Gaussian distribution. Both of them are shown to give better modeling of the histogram of the clean speech. Second, we focus on improving the estimation of the variances of the STFT coefficients of the desired signal. In the original WPE algorithm, the variances are estimated in each frequency bin independently without considering the cross-frequency correlation. Thus, we integrate the nonnegative matrix factorization (NMF) into the WPE algorithm to refine the estimation of the variances and hence obtain a better dereverberation performance. Another category of MCLP based dereverberation algorithm has been proposed in literature by exploiting the sparsity of the STFT coefficients of the desired signal for calculating the predictor coefficients. In this thesis, we also investigate an efficient algorithm based on the maximization of the group sparsity of desired signal using mixed norms. Inspired by the idea of sparse linear predictor (SLP), we propose to include a sparse constraint for the predictor coefficients in order to further improve the dereverberation performance. A weighting parameter is also introduced to achieve a trade-off between the sparsity of the desired signal and the predictor coefficients. Computer simulation of the proposed dereverberation algorithms is conducted. Our experimental results show that the proposed algorithms can significantly improve the quality of reverberant speech signal under different reverberation times. Subjective evaluation also gives a more intuitive demonstration of the enhanced speech intelligibility. Performance comparison also shows that our algorithms outperform some of the state-of-the-art dereverberation techniques

    Instrumental and perceptual evaluation of dereverberation techniques based on robust acoustic multichannel equalization

    Get PDF
    Speech signals recorded in an enclosed space by microphones at a distance from the speaker are often corrupted by reverberation, which arises from the superposition of many delayed and attenuated copies of the source signal. Because reverberation degrades the signal, removing reverberation would enhance quality. Dereverberation techniques based on acoustic multichannel equalization are known to be sensitive to room impulse response perturbations. In order to increase robustness, several methods have been proposed, as for example, using a shorter reshaping filter length, incorporating regularization, or applying a sparsity-promoting penalty function. This paper focuses on evaluating the performance of these methods for single-source multi-microphone scenarios, using instrumental performance measures as well as using subjective listening tests. By analyzing the correlation between the instrumental and the perceptual results, it is shown that signal-based performance measures are more advantageous than channel-based performance measures to evaluate the perceptual speech quality of signals that were dereverberated by equalization techniques. Furthermore, this analysis also demonstrates the need to develop more reliable instrumental performance measures

    Sparseness-controlled adaptive algorithms for supervised and unsupervised system identification

    No full text
    In single-channel hands-free telephony, the acoustic coupling between the loudspeaker and the microphone can be strong and this generates echoes that can degrade user experience. Therefore, effective acoustic echo cancellation (AEC) is necessary to maintain a stable system and hence improve the perceived voice quality of a call. Traditionally, adaptive filters have been deployed in acoustic echo cancellers to estimate the acoustic impulse responses (AIRs) using adaptive algorithms. The performances of a range of well-known algorithms are studied in the context of both AEC and network echo cancellation (NEC). It presents insights into their tracking performances under both time-invariant and time-varying system conditions. In the context of AEC, the level of sparseness in AIRs can vary greatly in a mobile environment. When the response is strongly sparse, convergence of conventional approaches is poor. Drawing on techniques originally developed for NEC, a class of time-domain and a frequency-domain AEC algorithms are proposed that can not only work well in both sparse and dispersive circumstances, but also adapt dynamically to the level of sparseness using a new sparseness-controlled approach. As it will be shown later that the early part of the acoustic echo path is sparse while the late reverberant part of the acoustic path is dispersive, a novel approach to an adaptive filter structure that consists of two time-domain partition blocks is proposed such that different adaptive algorithms can be used for each part. By properly controlling the mixing parameter for the partitioned blocks separately, where the block lengths are controlled adaptively, the proposed partitioned block algorithm works well in both sparse and dispersive time-varying circumstances. A new insight into an analysis on the tracking performance of improved proportionate NLMS (IPNLMS) is presented by deriving the expression for the mean-square error. By employing the framework for both sparse and dispersive time-varying echo paths, this work validates the analytic results in practical simulations for AEC. The time-domain second-order statistic based blind SIMO identification algorithms, which exploit the cross relation method, are investigated and then a technique with proportionate step-size control for both sparse and dispersive system identification is also developed

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis
    • 

    corecore