229 research outputs found

    Blind block synchronization algorithms in cyclic prefix systems

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, symbol synchronization is a critical step for successful data transmission. While this task is done in most current systems by using training symbols, a few studies have been dedicated to solving the problem blindly, that is, where training symbols are not available. Blind symbol synchronization problem is especially important in many blind channel estimation algorithms in the literature which assume that OFDM symbol synchronization is perfect. In this paper, a broader version of the blind symbol synchronization problem is studied, namely, blind block synchronization in cyclic-prefix (CP) systems. The proposed algorithm for this broader problem covers the blind symbol synchronization problem in OFDM systems. Unlike previously reported algorithms which are based on obtaining sufficient statistics of received samples, the proposed algorithm is capable of identifying the correct block boundaries using much less received data in absence of noise. Simulation results of the proposed algorithm not only verify the declared property but also demonstrate improvement in accuracy of symbol synchronization over previously reported algorithms in presence of noise

    Blind channel estimation and signal retrieving for MIMO relay systems

    Get PDF
    In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop multiple-input multiple-output (MIMO) relay systems. This new algorithm integrates two blind source separation (BSS) methods to estimate the individual channel state information (CSI) of the source-relay and relay-destination links. In particular, a first-order Z-domain precoding technique is developed for the blind estimation of the relay-destination channel matrix, where the signals received at the relay node are pre-processed by a set of precoders before being transmitted to the destination node. With the estimated signals at the relay node, we propose an algorithm based on the constant modulus and signal mutual information properties to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, the proposed algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm

    2D Linear Precoded OFDM for future mobile Digital Video Broadcasting

    Get PDF
    International audienceIn this paper, we propose a novel channel estimation technique based on 2D spread pilots. The merits of this technique are its simplicity, its flexibility regarding the transmission scenarios, and the spectral efficiency gain obtained compared to the classical pilot based estimation schemes used in DVB standards. We derive the analytical expression of the mean square error of the estimator and show it is a function of the autocorrelation of the channel in both time and frequency domains. The performance evaluated over a realistic channel model shows the efficiency of this technique which turns out to be a promising channel estimation for the future mobile video broadcasting systems

    The Practical Challenges of Interference Alignment

    Full text link
    Interference alignment (IA) is a revolutionary wireless transmission strategy that reduces the impact of interference. The idea of interference alignment is to coordinate multiple transmitters so that their mutual interference aligns at the receivers, facilitating simple interference cancellation techniques. Since IA's inception, researchers have investigated its performance and proposed improvements, verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity) in a variety of settings, developing algorithms for determining alignment solutions, and generalizing transmission strategies that relax the need for perfect alignment but yield better performance. This article provides an overview of the concept of interference alignment as well as an assessment of practical issues including performance in realistic propagation environments, the role of channel state information at the transmitter, and the practicality of interference alignment in large networks.Comment: submitted to IEEE Wireless Communications Magazin
    corecore