459 research outputs found

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Blind Estimation of OFDM System Parameters for Automatic Signal Identification

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has gained worldwide popular­ ity in broadband wireless communications recently due to its high spectral efficiency and robust performance in multipath fading channels. A growing trend of smart receivers which can support and adapt to multiple OFDM based standards auto­ matically brings the necessity of identifying different standards by estimating OFDM system parameters without a priori information. Consequently, blind estimation and identification of OFDM system parameters has received considerable research atten­ tions. Many techniques have been developed for blind estimation of various OFDM parameters, whereas estimation of the sampling frequency is often ignored. Further­ more, the estimated sampling frequency of an OFDM signal has to be very accurate for data recovery due to the high sensitivity of OFDM signals to sampling clock offset. To address the aforementioned problems, we propose a two-step cyclostation- arity based algorithm with low computational complexity to precisely estimate the sampling frequency of a received oversampled OFDM signal. With this estimated sampling frequency and oversampling ratio, other OFDM system parameters, i.e., the number of subcarriers, symbol duration and cyclic prefix (CP) length can be es­ timated based on the cyclic property from CP sequentially. In addition, modulation scheme used in the OFDM can be classified based on the higher-order statistics (HOS) of the frequency domain OFDM signal. All the proposed algorithms are verified by a lab testing system including a vec­ tor signal generator, a spectrum analyzer and a high speed digitizer. The evaluation results confirm the high precision and efficacy of the proposed algorithm in realistic scenarios

    Semi-blind channel estimation for multiuser OFDM-IDMA systems.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.Over the last decade, the data rate and spectral efficiency of wireless mobile communications have been significantly enhanced. OFDM technology has been used in the development of advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting. In general, bits of information in mobile communication systems are conveyed through radio links to receivers. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. The ability to know the channel impulse response (CIR) and Channel State Information (CSI) helps to remove the ISI from the signal and make coherent detection of the transmitted signal at the receiver end of the system easy and simple. The information about CIR and CSI are primarily provided by channel estimation. This thesis is focused on the development of multiple access communication technique, Multicarrier Interleave Division Multiple Access (MC-IDMA) and the corresponding estimation of the system channel. It compares various efficient channel estimation algorithms. Channel estimation of OFDM-IDMA scheme is important because the emphasis from previous studies assumed the implementation of MC-IDMA in a perfect scenario, where Channel State Information (CSI) is known. MC-IDMA technique incorporates three key features that will be common to the next generation communication systems; multiple access capability, resistance to multipath fading and high bandwidth efficiency. OFDM is almost completely immune to multipath fading effects and IDMA has a recently proposed multiuser capability scheme which employs random interleavers as the only method for user separation. MC-IDMA combines the features of OFDM and IDMA to produce a system that is Inter Symbol Interference (ISI) free and has higher data rate capabilities for multiple users simultaneously. The interleaver property of IDMA is used by MC-IDMA as the only means by which users are separated at the receiver and also its entire bandwidth expansion is devoted to low rate Forward Error Correction (FEC). This provides additional coding gain which is not present in conventional Multicarrier Multiuser systems, (MC-MU) such as Code Division Multiple Access (CDMA), Multicarrier-Code Division Multiple Access (MC-CDMA) systems, and others. The effect of channel fading and both cross-cell and intra-cell Multiple Access Interference (MAI) in MC-IDMA is suppressed efficiently by its low-cost turbo-type Chip-by-Chip (CBC) multiuser detection algorithm. We present the basic principles of OFDM-IDMA transmitter and receiver. Comparative studies between Multiple Access Scheme such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), CDMA and IDMA are carried out. A linear Minimum Mean Square Error (MMSE)-based estimation algorithm is adopted and implemented. This proposed algorithm is a non-data aided method that focuses on obtaining the CSI, remove ISI and reduce the complexity of the MMSE algorithm. However, to obtain a better and improved system performance, an improved MMSE algorithm and simplified MMSE using the structured correlation and reduced auto-covariance matrix are developed in this thesis and proposed for implementation of semi-blind channel estimation in OFDM-IDMA communication systems. The effectiveness of the adopted and proposed algorithms are implemented in a Rayleigh fading multipath channel with varying mobile speeds thus demonstrating the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance, and with less complexity. The performance of the channel estimation algorithm is presented in terms of the mean square error (MSE) and bit error rate (BER) in both slow fading and fast fading multipath scenarios and the results are documented as well

    Blind Demodulation of Pass Band OFDMA Signals and Jamming Battle Damage Assessment Utilizing Link Adaptation

    Get PDF
    This research focuses on blind demodulation of a pass band OFDMA signal so that jamming effectiveness can be assessed; referred to in this research as BDA. The research extends, modifies and collates work within literature to perform a new method of blindly demodulating of a passband OFDMA signal, which exhibits properties of the 802.16 Wireless MAN OFDMA standard, and presents a novel method for performing BDA via observation of SC LA. Blind demodulation is achieved by estimating the carrier frequency, sampling rate, pulse shaping filter roll off factor, synchronization parameters and CFO. The blind demodulator\u27s performance in AWGN and a perfect channel is evaluated where it improves using a greater number OFDMA DL symbols and increased CP length. Performance in a channel with a single multi-path interferer is also evaluated where the blind demodulator\u27s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the blindly demodulated signal between successive OFDMA DL sub frames in two scenarios. The first is where modulation signaling can be used to observe change of SC modulation. The second assumes modulation signaling is not available and the SC\u27s modulation must be classified. Classification of SC modulation is performed using sixth-order cumulants where performance increases with the number of OFDMA symbols. The SC modulation classi er is susceptible to the CFO caused by blind demodulation. In a perfect channel it is shown that SC modulation can be classified using a variety of OFDMA DL sub frame lengths in symbols. The SC modulation classifier experienced degraded performance in a multi-path channel and it is recommended that it is extended to perform channel equalization in future work

    Semi Blind Time Domain Equalization for MIMO-OFDM Systems

    Get PDF
    In this thesis, a semi-blind time-domain equalization technique is proposed for general MIMO OFDM systems. The received OFDM symbols are shifted by more than or equal to the cyclic prefix (CP) length, and a blind equalizer is designed to completely suppress both inter-carrier interference (ICI) and inter-symbol interference (ISI) using second-order statistics of the shifted received OFDM symbols. Only a one-tap equalizer is needed to detect the time domain signals from the blind equalizer output, and one pilot OFDM symbol is utilized to estimate the required channel state information for the design of the one-tap equalizer. Simulation results show that this technique is robust against the number of shifts in excess of the CP length

    Blind phase noise estimation for CO-OFDM transmissions

    Get PDF
    In this paper, we discuss in detail the performance of different blind phase noise estimation schemes for coherent optical orthogonal frequency-division multiplexing transmissions. We first derive a general model of such systems with phase noise. Based on this model, the phase cycle slip probability in blind phase noise estimation is calculated. For blind phase tracking, we present and discuss the implementation of feedback loop and digital phase tracking. We then analyze in detail the performance of a decision-direct-free blind scheme, in which only three test phases are required for phase noise compensation. We show that the decision-direct-free blind scheme is transparent to QAM formats, and can provide a similar performance to the conventional blind phase search employing 16 test phases. We also propose two novel cost functions to further reduce the complexity of this scheme

    Communication and Jamming BDA of OFDMA communication systems using the software defined radio platform WARP

    Get PDF
    The aim of this research is to demonstrate and evaluate the ability to eavesdrop and interfere with orthogonal frequency division multiple access-down link (OFDMA-DL) signal features utilising Wireless Open Access Research Platform (WARP) boards. The OFDMA-DL waveforms have been developed with 64 sub carriers and have guards and pilots as comparable to the 802.11a WiFi standard. An eavesdropper/interferer (ExJx) is used to estimate signal features, remotely gaining intelligence without alerting the communication system. This research also demonstrates how estimated signal features can be used to interfere with an established communication system. Methods used to perform the signal feature estimation exploit the cyclostationary nature of the OFDMA-DL waveform, with higher order cumulants utilised to classify modulation schemes. To assess the ability of the ExJx system to eavesdrop (Ex), Communication Battle Damage Assessment (CBDA) techniques are used. To assess the ability of the ExJx system to interfere (Jx), Jamming Battle Damage Assessment (JBDA) techniques are used
    corecore