175 research outputs found

    A Reduced Reference Image Quality Measure Using Bessel K Forms Model for Tetrolet Coefficients

    Full text link
    In this paper, we introduce a Reduced Reference Image Quality Assessment (RRIQA) measure based on the natural image statistic approach. A new adaptive transform called "Tetrolet" is applied to both reference and distorted images. To model the marginal distribution of tetrolet coefficients Bessel K Forms (BKF) density is proposed. Estimating the parameters of this distribution allows to summarize the reference image with a small amount of side information. Five distortion measures based on the BKF parameters of the original and processed image are used to predict quality scores. A comparison between these measures is presented showing a good consistency with human judgment

    Detection and estimation of image blur

    Get PDF
    The airborne imagery consisting of infrared (IR) and multispectral (MSI) images collected in 2009 under airborne mine and minefield detection program by Night Vision and Electronic Sensors Directorate (NVESD) was found to be severely blurred due to relative motion between the camera and the object and some of them with defocus blurs due to various reasons. Automated detection of blur due to motion and defocus blurs and the estimation of blur like point spread function for severely degraded images is an important task for processing and detection in such airborne imagery. Although several full reference and reduced reference methods are available in the literature, using no reference methods are desirable because there was no information of the degradation function and the original image data. In this thesis, three no reference algorithms viz. Haar wavelet (HAAR), modified Haar using singular value decomposition (SVD), and intentional blurring pixel difference (IBD) for blur detection are compared and their performance is qualified based on missed detections and false alarms. Three human subjects were chosen to perform subjective testing on randomly selected data sets and the truth for each frame was obtained from majority voting. The modified Haar algorithm (SVD) resulted in the least number of missed detections and least number of false alarms. This thesis also evaluates several methods for estimating the point spread function (PSF) of these degraded images. The Auto-correlation function (ACF), Hough transform (Hough) and steer Gaussian filter (SGF) based methods were tested on several synthetically motion blurred images and further validated on naturally blurred images. Statistics of pixel error estimate using these methods were computed based on 8640 artificially blurred image frames --Abstract, page iii

    Techniques for enhancing digital images

    Get PDF
    The images obtain from either research studies or optical instruments are often corrupted with noise. Image denoising involves the manipulation of image data to produce a visually high quality image. This thesis reviews the existing denoising algorithms and the filtering approaches available for enhancing images and/or data transmission. Spatial-domain and Transform-domain digital image filtering algorithms have been used in the past to suppress different noise models. The different noise models can be either additive or multiplicative. Selection of the denoising algorithm is application dependent. It is necessary to have knowledge about the noise present in the image so as to select the appropriated denoising algorithm. Noise models may include Gaussian noise, Salt and Pepper noise, Speckle noise and Brownian noise. The Wavelet Transform is similar to the Fourier transform with a completely different merit function. The main difference between Wavelet transform and Fourier transform is that, in the Wavelet Transform, Wavelets are localized in both time and frequency. In the standard Fourier Transform, Wavelets are only localized in frequency. Wavelet analysis consists of breaking up the signal into shifted and scales versions of the original (or mother) Wavelet. The Wiener Filter (mean squared estimation error) finds implementations as a LMS filter (least mean squares), RLS filter (recursive least squares), or Kalman filter. Quantitative measure (metrics) of the comparison of the denoising algorithms is provided by calculating the Peak Signal to Noise Ratio (PSNR), the Mean Square Error (MSE) value and the Mean Absolute Error (MAE) evaluation factors. A combination of metrics including the PSNR, MSE, and MAE are often required to clearly assess the model performance
    • …
    corecore