597 research outputs found

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    A Summative Comparison of Blind Channel Estimation Techniques for Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    The OFDM techniquei.e. Orthogonal frequency division multiplexing has become prominent in wireless communication since its instruction in 1950’s due to its feature of combating the multipath fading and other losses. In an OFDM system, a large number of orthogonal, overlapping, narrow band subchannels or subcarriers, transmitted in parallel, divide the available transmission bandwidth. The separation of the subcarriers is theoretically optimal such that there is a very compact spectral utilization. This paper reviewed the possible approaches for blind channel estimation in the light of the improved performance in terms of speed of convergence and complexity. There were various researches which adopted the ways for channel estimation for Blind, Semi Blind and trained channel estimators and detectors. Various ways of channel estimation such as Subspace, iteration based, LMSE or MSE based (using statistical methods), SDR, Maximum likelihood approach, cyclostationarity, Redundancy and Cyclic prefix based. The paper reviewed all the above approaches in order to summarize the outcomes of approaches aimed at optimum performance for channel estimation in OFDM system

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    The Extended-window Channel Estimator For Iterative Channel-and-symbol Estimation

    Get PDF
    The application of the expectation-maximization (EM) algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE). The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer) and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW) estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE. © 2005 Hindawi Publishing Corporation.200529299Barry, J.R., Lee, E.A., Messerschmitt, D.G., (2003) Digital Communications, , Kluwer Academic Publishers, Norwell, Mass, USA, 3rd editionAyadi, J., De Carvalho, E., Slock, D.T.M., Blind and semi-blind maximum likelihood methods for FIR multichannel identification (1998) Proc. IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP'98), 6, pp. 3185-3188. , Seattle, Wash, USA, MayFeder, M., Catipovic, J.A., Algorithms for joint channel estimation and data recovery-application to equalization in underwater communications (1991) IEEE J. Oceanic Eng., 16 (1), pp. 42-55Kaleh, G.K., Vallet, R., Joint parameter estimation and symbol detection for linear or nonlinear unknown channels (1994) IEEE Trans. Commun., 42 (7), pp. 2406-2413Anton-Haro, C., Fonollosa, J.A.R., Fonollosa, J.R., Blind channel estimation and data detection using hidden Markov models (1997) IEEE Trans. Signal Processing, 45 (1), pp. 241-247Garcia-Frias, J., Villasenor, J.D., Combined turbo detection and decoding for unknown ISI channels (2003) IEEE Trans. Commun., 51 (1), pp. 79-85Kammeyer, K.-D., Kühn, V., Petermann, T., Blind and nonblind turbo estimation for fast fading GSM channels (2001) IEEE J. Select. Areas Commun., 19 (9), pp. 1718-1728Berthet, A.O., Ünal, B.S., Visoz, R., Iterative decoding of convolutionally encoded signals over multipath Rayleigh fading channels (2001) IEEE J. Select. Areas Commun., 19 (9), pp. 1729-1743Lopes, R.R., Barry, J.R., Exploiting error-control coding in blind channel estimation (2001) IEEE Global Communications Conference (GLOBECOM'01), 2, pp. 1317-1321. , San Antonio, Tex, USA, NovemberKrishnamurthy, V., Moore, J.B., On-line estimation of hidden Markov model parameters based on the Kullback-Leibler information measure (1993) IEEE Trans. Signal Processing, 41 (8), pp. 2557-2573White, L.B., Perreau, S., Duhamel, P., Reduced computation blind equalization for FIR channel input Markov models (1995) IEEE International Conference on Communications (ICC'95), 2, pp. 993-997. , Seattle, Wash, USA, JuneShao, M., Nikias, C.L., An ML/MMSE estimation approach to blind equalization (1994) Proc. IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP'94), 4, pp. 569-572. , Adelaide, SA, Australia, AprilCirpan, H.A., Tsatsanis, M.K., Stochastic maximum likelihood methods for semi-blind channel estimation (1998) IEEE Signal Processing Lett., 5 (1), pp. 21-24Paris, B.-P., Self-adaptive maximum-likelihood sequence estimation (1993) IEEE Global Communications Conference (GLOBECOM'93), 4, pp. 92-96. , Houston, Tex, USA, November-DecemberBaum, L.E., Petrie, T., Soules, G., Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains (1970) Annals of Mathematics Statistics, 41 (1), pp. 164-171Dempster, A.P., Laird, N.M., Rubin, D.B., Maximum likelihood from incomplete data via the em algorithm (1977) Journal of the Royal Statistics Society, 39 (1), pp. 1-38Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J., Optimal decoding of linear codes for minimizing symbol error rate (1974) IEEE Trans. Inform. Theory, 20 (2), pp. 284-287Berrou, C., Glavieux, A., Thitimajshima, P., Near Shannon limit error-correcting coding and decoding: Turbo-codes (1993) IEEE International Conference on Communications (ICC'93), 2, pp. 1064-1070. , Geneva, Switzerland, MayBenedetto, S., Divsalar, D., Montorsi, G., Pollara, F., Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding (1998) IEEE Trans. Inform. Theory, 44 (3), pp. 909-926Tüchler, M., Koetter, R., Singer, A.C., Turbo equalization: Principles and new results (2002) IEEE Trans. Commun., 50 (5), pp. 754-767Lopes, R.R., Barry, J.R., Soft-output decision-feedback equalization with a priori information (2003) IEEE Global Communications Conference (GLOBECOM'03), 3, pp. 1705-1709. , San Francisco, Calif, USA, DecemberPoor, H.V., (1994) An Introduction to Signal Detection and Estimation, , Springer-Verlag, New York, NY, USA, 2nd editionMontemayor, C.A., Flikkema, P.G., Near-optimum iterative estimation of dispersive multipath channels (1998) IEEE 48th Vehicular Technology Conference (VTC'98), 3, pp. 2246-2250. , Ottawa, ON, Canada, MaySandell, M., Luschi, C., Strauch, P., Yan, R., Iterative channel estimation using soft decision feedback (1998) IEEE Global Communications Conference (GLOBECOM'98), 6, pp. 3728-3733. , Sydney, NSW, Australia, Novembe

    Enhanced Transmission and Receiver Diversity in Orthogonal Frequency Division Multiplex Systems using Blind Channel Estimation

    Get PDF
    This paper deals with the blind channel estimation technique in OFDM system with receiver diversity to analyze the bit error rate with respect to the number of symbols. The paper clearly brings out the advantage that is being offered by the use of Blind channel estimation technique in terms of SNR requirements. Also a comparative study has been made for the analysis of BER variation with the amount i.e. number of symbols being transmitted. The work also explores the possibility of obtaining an optimum value of number of receivers that may lead to desired BER for threshold value of SNR in an OFDM system

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems
    • …
    corecore