612 research outputs found

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Electron Thermal Runaway in Atmospheric Electrified Gases: a microscopic approach

    Get PDF
    Thesis elaborated from 2018 to 2023 at the Instituto de Astrofísica de Andalucía under the supervision of Alejandro Luque (Granada, Spain) and Nikolai Lehtinen (Bergen, Norway). This thesis presents a new database of atmospheric electron-molecule collision cross sections which was published separately under the DOI : With this new database and a new super-electron management algorithm which significantly enhances high-energy electron statistics at previously unresolved ratios, the thesis explores general facets of the electron thermal runaway process relevant to atmospheric discharges under various conditions of the temperature and gas composition as can be encountered in the wake and formation of discharge channels

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome Parkfunktionalität in einem realen Versuchsträger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken über eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren Datensätze dieser Annotationsebene und Radarspezifikation öffentlich verfügbar. Das überwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstützt. Für die kohärente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrückt. Ein speziell für Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM für beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen Parkfunktionalität evaluiert. Im Durchschnitt über 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher Manöverlänge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% übertrifft. Die Kartengenauigkeit von veränderlichen, neukartierten Orten über eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. Für das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    SuperCDMS HVeV Run 2 Low-Mass Dark Matter Search, Highly Multiplexed Phonon-Mediated Particle Detector with Kinetic Inductance Detector, and the Blackbody Radiation in Cryogenic Experiments

    Get PDF
    There is ample evidence of dark matter (DM), a phenomenon responsible for ≈ 85% of the matter content of the Universe that cannot be explained by the Standard Model (SM). One of the most compelling hypotheses is that DM consists of beyond-SM particle(s) that are nonluminous and nonbaryonic. So far, numerous efforts have been made to search for particle DM, and yet none has yielded an unambiguous observation of DM particles. We present in Chapter 2 the SuperCDMS HVeV Run 2 experiment, where we search for DM in the mass ranges of 0.5--10⁴ MeV/c² for the electron-recoil DM and 1.2--50 eV/c² for the dark photon and the Axion-like particle (ALP). SuperCDMS utilizes cryogenic crystals as detectors to search for DM interaction with the crystal atoms. The interaction is detected in the form of recoil energy mediated by phonons. In the HVeV project, we look for electron recoil, where we enhance the signal by the Neganov-Trofimov-Luke effect under high-voltage biases. The technique enabled us to detect quantized e⁻h⁺ creation at a 3% ionization energy resolution. Our work is the first DM search analysis considering charge trapping and impact ionization effects for solid-state detectors. We report our results as upper limits for the assumed particle models as functions of DM mass. Our results exclude the DM-electron scattering cross section, the dark photon kinetic mixing parameter, and the ALP axioelectric coupling above 8.4 x 10⁻³⁴ cm², 3.3 x 10⁻¹⁴, and 1.0 x 10⁻⁹, respectively. Currently every SuperCDMS detector is equipped with a few phonon sensors based on the transition-edge sensor (TES) technology. In order to improve phonon-mediated particle detectors' background rejection performance, we are developing highly multiplexed detectors utilizing kinetic inductance detectors (KIDs) as phonon sensors. This work is detailed in chapter 3 and chapter 4. We have improved our previous KID and readout line designs, which enabled us to produce our first ø3" detector with 80 phonon sensors. The detector yielded a frequency placement accuracy of 0.07%, indicating our capability of implementing hundreds of phonon sensors in a typical SuperCDMS-style detector. We detail our fabrication technique for simultaneously employing Al and Nb for the KID circuit. We explain our signal model that includes extracting the RF signal, calibrating the RF signal into pair-breaking energy, and then the pulse detection. We summarize our noise condition and develop models for different noise sources. We combine the signal and the noise models to be an energy resolution model for KID-based phonon-mediated detectors. From this model, we propose strategies to further improve future detectors' energy resolution and introduce our ongoing implementations. Blackbody (BB) radiation is one of the plausible background sources responsible for the low-energy background currently preventing low-threshold DM experiments to search for lower DM mass ranges. In Chapter 5, we present our study for such background for cryogenic experiments. We have developed physical models and, based on the models, simulation tools for BB radiation propagation as photons or waves. We have also developed a theoretical model for BB photons' interaction with semiconductor impurities, which is one of the possible channels for generating the leakage current background in SuperCDMS-style detectors. We have planned for an experiment to calibrate our simulation and leakage current generation model. For the experiment, we have developed a specialized ``mesh TES'' photon detector inspired by cosmic microwave background experiments. We present its sensitivity model, the radiation source developed for the calibration, and the general plan of the experiment.</p

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Large-Scale surveys for continuous gravitational waves: from data preparation to multi-stage hierarchical follow-ups

    Get PDF
    The gravitational wave event GW150914 was the first direct detection of gravitational waves roughly 100 years after their prediction by Albert Einstein. The detection was a breakthrough, opening another channel to observe the Universe. Since then over 90 detections of merging compact objects have been made, most of them coalescences of binary black holes of different masses. There have been two black hole-neutron star, and two binary neutron-star mergers. Another breakthrough was the first binary neutron-star merger, GW170817, associated with a slew of electromagnetic observations, including a gamma-ray burst 1.7s after the merger. Compact binary coalescence events are cataclysmic events in which multiple solar masses are emitted in gravitational waves in ~seconds. Still, their gravitational wave detection requires sophisticated measuring devices: kilometer-scale laser interferometers. Another not yet detected form of gravitational radiation are continuous gravitational waves from e.g., but not limited to, fast-spinning neutron stars nonaxisymmetric relatively to their rotational axis. The gravitational wave amplitude on Earth is orders of magnitude weaker than the compact binary coalescence events, but, in the case of the nonaxisymmetric neutron star, is emitted as long as the neutron star is spinning and sustaining the deformation, which may be months to years. The gravitational wave is mostly emitted at twice the rotational frequency, with a possible frequency evolution (spin-down) due to the energy emitted by gravitational waves, as well as other braking mechanisms. This nearly monochromatic continuous wave is received by observers on Earth Doppler modulated by Earth's orbit and spin. Although the waveform is seemingly simple, the detection problem for signals from unknown sources is very challenging. The all-sky search for unknown neutron stars in our galaxy detailed in this work used the volunteer distributed computing project Einstein@Home and the ATLAS supercomputer for several months, taking tens of thousands of total CPU-time years to complete. In this work I describe the full-scale data analysis procedure, including data preparation, search set-up optimization and post-processing of search results, whose design and implementation is the core of my doctoral research work. I also present a number of observational results that demonstrate the real-world application of the methodologies that I designed.Das Gravitationswellenereignis GW150914 war der erste direkte Nachweis von Gravitationswellen rund 100 Jahre nach deren Vorhersage durch Albert Einstein. Die Entdeckung war ein Durchbruch und eröffnete einen weiteren Kanal zur Beobachtung des Universums. Seitdem wurden über 90 weitere verschmelzende kompakte Objekte entdeckt, die meisten binäre schwarze Löcher unterschiedlicher Masse, aber auch zweimal verschmelzende Schwarze Löcher mit Neutronensternen und zwei Verschmelzungen von binären Neutronensternen. Ein weiterer Durchbruch war die Beobachtung der ersten Verschmelzung zweier Neutronensterne, GW170817, die mit einer Reihe von elektromagnetischen Beobachtungen einherging, darunter ein Gammastrahlenausbruch 1.7s nach der Verschmelzung. Bei der Verschmelzung kompakter Objekte handelt es sich um kataklysmische Ereignisse, bei denen innerhalb von ~Sekunden mehrere Sonnenmassen in Form von Gravitationswellen ausgestoßen werden. Ihr Nachweis erfordert jedoch hochentwickelte Messgeräte: Laserinterferometer im Kilometermaßstab. Eine weitere, noch nicht nachgewiesene Form der Gravitationsstrahlung sind kontinuierliche Gravitationswellen, die z.B., aber nicht nur, von schnell rotierenden Neutronensternen ausgehen, die relativ zu ihrer Rotationsachse nicht achsensymmetrisch sind. Die Amplitude der kontinuierlichen Gravitationswellen auf der Erde ist um Größenordnungen schwächer als die der verschmelzenden kompakten Objekte, wird aber im Fall des nicht achsensymmetrischen Neutronensterns so lange abgestrahlt, wie der Neutronenstern rotiert und die Deformation aufrechterhält, was Monate bis Jahre sein können. Die Gravitationswelle wird meist mit der doppelten Rotationsfrequenz ausgestrahlt, wobei eine Frequenzentwicklung (Spin-down) aufgrund der von Gravitationswellen ausgesandten Energie, sowie anderer Bremsmechanismen möglich ist. Diese nahezu monochromatische, kontinuierliche Welle wird von einem Beobachter auf der Erde Doppler-moduliert durch die Erdumlaufbahn und die Erddrehung empfangen. Obwohl die Wellenform scheinbar einfach ist, ist das Problem des Nachweises von Signalen aus unbekannten Quellen eine große Herausforderung. Die in dieser Arbeit beschriebene Suche nach unbekannten Neutronensternen in unserer Galaxie über den kompletten Himmel verwendete über mehrere Monate hinweg das Volunteer-Computing-Projekt Einstein@Home und den ATLAS-Supercomputer und benötigte insgesamt Zehntausende von Jahren an Rechenzeit. In dieser Arbeit beschreibe ich das vollständige Datenanalyseverfahren einschließlich der Datenvorbereitung, der Optimierung der Suchparameter und der Nachbearbeitung der Suchergebnisse, dessen Entwurf und Implementierung das Kernstück meiner Doktorarbeit darstellt. Außerdem stelle ich eine Reihe von Beobachtungsergebnissen vor, welche die praktische Anwendung der von mir entwickelten Methoden demonstrieren

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Elements of Ion Linear Accelerators, Calm in The Resonances, Other_Tales

    Full text link
    The main part of this book, Elements of Linear Accelerators, outlines in Part 1 a framework for non-relativistic linear accelerator focusing and accelerating channel design, simulation, optimization and analysis where space charge is an important factor. Part 1 is the most important part of the book; grasping the framework is essential to fully understand and appreciate the elements within it, and the myriad application details of the following Parts. The treatment concentrates on all linacs, large or small, intended for high-intensity, very low beam loss, factory-type application. The Radio-Frequency-Quadrupole (RFQ) is especially developed as a representative and the most complicated linac form (from dc to bunched and accelerated beam), extending to practical design of long, high energy linacs, including space charge resonances and beam halo formation, and some challenges for future work. Also a practical method is presented for designing Alternating-Phase- Focused (APF) linacs with long sequences and high energy gain. Full open-source software is available. The following part, Calm in the Resonances and Other Tales, contains eyewitness accounts of nearly 60 years of participation in accelerator technology. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10)Comment: 652 pages. Some hundreds of figures - all images, there is no data in the figures. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10
    corecore