33 research outputs found

    Blind Speckle Decorrelation for SAR Image Despeckling

    Get PDF
    In the past few decades, several methods have been developed for despeckling synthetic aperture radar (SAR) images. A considerable number of them have been derived under the assumption of a fully-developed speckle model in which the multiplicative speckle noise is supposed to be a white process. Unfortunately, the transfer function of SAR acquisition systems can introduce a statistical correlation, which decreases the despeckling efficiency of such filters. In this paper, a whitening method is proposed for processing a complex image acquired by a SAR system. We demonstrate that the proposed approach allows the successful application of classical despeckling algorithms. First, we perform an estimation of the SAR system frequency response based on some statistical properties of the acquired image and by using realistic assumptions. Then, a decorrelation process is applied on the acquired image, taking into account the presence of point targets. Finally, the image is despeckled. The experimental results show that the despeckling filters achieve better performance when they are preceded by the proposed whitening method; furthermore, the radiometric characteristics of the image are preserve

    Accurate Despeckling and Estimation of Polarimetric Features by Means of a Spatial Decorrelation of the Noise in Complex PolSAR Data

    Get PDF
    In this work, we extended a procedure for the spatial decorrelation of fully-developed speckle, originally developed for single-polarization SAR data, to fully-polarimetric SAR data. The spatial correlation of the noise depends on the tapering window in the Fourier domain used by the SAR processor to avoid defocusing of targets caused by Gibbs effects. Since each polarimetric channel is focused independently of the others, the noise-whitening procedure can be performed applying the decorrelation stage to each channel separately. Equivalently, the noise-whitening stage is applied to each element of the scattering matrix before any multilooking operation, either coherent or not, is performed. In order to evaluate the impact of a spatial decorrelation of the noise on the performance of polarimetric despeckling filters, we make use of simulated PolSAR data, having user-defined polarimetric features. We optionally introduce a spatial correlation of the noise in the simulated complex data by means of a 2D separable Hamming window in the Fourier domain. Then, we remove such a correlation by using the whitening procedure and compare the accuracy of both despeckling and polarimetric features estimation for the three following cases: uncorrelated, correlated, and decorrelated images. Simulation results showed a steady improvement of performance scores, most notably the equivalent number of looks (ENL), which increased after decorrelation and closely attained the value of the uncorrelated case. Besides ENL, the benefits of the noise decorrelation hold also for polarimetric features, whose estimation accuracy is diminished by the correlation. Also, the trends of simulations were confirmed by qualitative results of experiments carried out on a true Radarsat-2 image

    A Bayesian Joint Decorrelation and Despeckling approach for speckle reduction of SAR Images

    Get PDF
    In this paper, we present a novel approach for joint decorrelationand despeckling of synthetic aperture radar (SAR) imagery. An iterativemaximum a posterior estimation is performed to obtain thecorrelation and speckle-free SAR data, which incorporates a correlationmodel which realistically explores the physical correlatedprocess of speckle noise on signal in SAR imaging. The correlationmodel is determined automatically via Bayesian estimation in thelog-Fourier domain and patch-wise computation is used to accountfor spatial nonstationarities existing in SAR data. The proposedapproach is compared to a state-of-the-art despeckling techniqueusing both simulated and real SAR data. Experimental results illustrateits improvement in preserving the structural detail, especiallythe sharpness of the edges, when suppressing speckle noise

    Deep learning for inverse problems in remote sensing: super-resolution and SAR despeckling

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Multi-temporal speckle reduction with self-supervised deep neural networks

    Full text link
    Speckle filtering is generally a prerequisite to the analysis of synthetic aperture radar (SAR) images. Tremendous progress has been achieved in the domain of single-image despeckling. Latest techniques rely on deep neural networks to restore the various structures and textures peculiar to SAR images. The availability of time series of SAR images offers the possibility of improving speckle filtering by combining different speckle realizations over the same area. The supervised training of deep neural networks requires ground-truth speckle-free images. Such images can only be obtained indirectly through some form of averaging, by spatial or temporal integration, and are imperfect. Given the potential of very high quality restoration reachable by multi-temporal speckle filtering, the limitations of ground-truth images need to be circumvented. We extend a recent self-supervised training strategy for single-look complex SAR images, called MERLIN, to the case of multi-temporal filtering. This requires modeling the sources of statistical dependencies in the spatial and temporal dimensions as well as between the real and imaginary components of the complex amplitudes. Quantitative analysis on datasets with simulated speckle indicates a clear improvement of speckle reduction when additional SAR images are included. Our method is then applied to stacks of TerraSAR-X images and shown to outperform competing multi-temporal speckle filtering approaches. The code of the trained models is made freely available on the Gitlab of the IMAGES team of the LTCI Lab, T\'el\'ecom Paris Institut Polytechnique de Paris (https://gitlab.telecom-paris.fr/ring/multi-temporal-merlin/)

    Towards Deep Unsupervised SAR Despeckling with Blind-Spot Convolutional Neural Networks

    Get PDF
    SAR despeckling is a problem of paramount importance in remote sensing, since it represents the first step of many scene analysis algorithms. Recently, deep learning techniques have outperformed classical model-based despeckling algorithms. However, such methods require clean ground truth images for training, thus resorting to synthetically speckled optical images since clean SAR images cannot be acquired. In this paper, inspired by recent works on blind-spot denoising networks, we propose a self-supervised Bayesian despeckling method. The proposed method is trained employing only noisy images and can therefore learn features of real SAR images rather than synthetic data. We show that the performance of the proposed network is very close to the supervised training approach on synthetic data and competitive on real data

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS
    corecore