1,888 research outputs found

    Estimation of Collision Multiplicities in IEEE 802.11-based WLANs

    Get PDF
    Abstract—Estimating the collision multiplicity (CM), i.e. the number of users involved in a collision, is a key task in multipacket reception (MPR) approaches and in collision resolution (CR) techniques. A new technique is proposed for IEEE 802.11 networks. The technique is based on recent advances in random matrix theory and rely on eigenvalue statistics. Provided that the eigenvalues of the covariance matrix of the observations are above a given threshold, signal eigenvalues can be separated from noise eigenvalues since their respective probability density functions are converging toward two different laws: a Gaussian law for the signal eigenvalues and a Tracy-Widom law for the noise eigenvalues. The proposed technique outperforms current estimation techniques in terms of underestimation rate. Moreover, this paper reveals that, contrary to what is generally assumed in current MPR techniques, a single observation of the colliding signals is far from being sufficient to perform a reliable CM estimation

    Fourier PCA and Robust Tensor Decomposition

    Full text link
    Fourier PCA is Principal Component Analysis of a matrix obtained from higher order derivatives of the logarithm of the Fourier transform of a distribution.We make this method algorithmic by developing a tensor decomposition method for a pair of tensors sharing the same vectors in rank-11 decompositions. Our main application is the first provably polynomial-time algorithm for underdetermined ICA, i.e., learning an n×mn \times m matrix AA from observations y=Axy=Ax where xx is drawn from an unknown product distribution with arbitrary non-Gaussian components. The number of component distributions mm can be arbitrarily higher than the dimension nn and the columns of AA only need to satisfy a natural and efficiently verifiable nondegeneracy condition. As a second application, we give an alternative algorithm for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in the presence of Gaussian noise.Comment: Extensively revised; details added; minor errors corrected; exposition improve
    corecore