188 research outputs found

    Blind Receiver Design for OFDM Systems Over Doubly Selective Channels

    Full text link

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    FBMC system: an insight into doubly dispersive channel impact

    Get PDF
    It has been claimed that filter bank multicarrier (FBMC) systems suffer from negligible performance loss caused by moderate dispersive channels in the absence of guard time protection between symbols. However, a theoretical and systematic explanation/analysis for the statement is missing in the literature to date. In this paper, based on one-tap minimum mean square error (MMSE) and zero-forcing (ZF) channel equalizations, the impact of doubly dispersive channel on the performance of FBMC systems is analyzed in terms of mean square error of received symbols. Based on this analytical framework, we prove that the circular convolution property between symbols and the corresponding channel coefficients in the frequency domain holds loosely with a set of inaccuracies. To facilitate analysis, we first model the FBMC system in a vector/matrix form and derive the estimated symbols as a sum of desired signal, noise, intersymbol interference (ISI), intercarrier interference (ICI), interblock interference (IBI), and estimation bias in the MMSE equalizer. Those terms are derived one-by-one and expressed as a function of channel parameters. The numerical results reveal that under harsh channel conditions, e.g., with large Doppler spread or channel delay spread, the FBMC system performance may be severely deteriorated and error floor will occur

    Improved Hybrid Blind PAPR Reduction Algorithm for OFDM Systems

    Get PDF
    The ever growing demand for high data rate communication services resulted into the development of long-term evolution (LTE) technology. LTE uses orthogonal frequency division multiplexing (OFDM) as a transmission technology in its PHY layer for down-link (DL) communications. OFDM is spectrally efficient multicarrier modulation technique ideal for high data transmissions over highly time and frequency varying channels. However, the transmitted signal in OFDM can have high peak values in the time domain due to inverse fast Fourier transform (IFFT) operation. This creates high peak-to-average power ratio (PAPR) when compared to single carrier systems. PAPR drives the power amplifiers to saturation degrading its efficiency by consuming more power. In this paper a hybrid blind PAPR reduction algorithm for OFDM systems is proposed, which is a combination of distortion technique (Clipping) and distortionless technique (DFT spreading). The DFT spreading is done prior to clipping reducing significantly the probability of having higher peaks in the composite signal prior to transmission. Simulation results show that the proposed algorithm outperforms unprocessed conventional OFDM transmission by 9 dB. Comparison with existing blind algorithms shows 7 dB improvement at error rate 10–3 and 3 dB improvement at error rate 10–1 when operating in flat fading and doubly dispersive channels, respectively.Keywords:    LTE Systems; OFDM; Peak to Average Power Ratio; DFT spreading; Signal to Noise Power Ratio
    • …
    corecore