44 research outputs found

    Smart Beamforming for 5G and LTE Legacy Systems

    Get PDF
    The new generation of wireless communication systems is expected to provide many features and advances for a variety of use cases. In addition, the basis of 5G, being the Long Term Evolution (LTE) will be developed in parallel, meaning that further improvements need to be done in both technologies. In this work we propose two novel schemes, one for each generation, that provide potential benefits for the scenarios in which we are focused, in terms of Bit Error Rate (BER), Probability of Collision and/or achievable Rate as we will see. Firstly, massive Machine Type Communications (mMTC) is a multi-user and multi-service air interface which will be key in the next generation of communications. In this work, we propose a frame structure and signal processing techniques at the receiver needed to create the beamformers whose final objective is reducing the probability of collision between devices trying to get the resources. In the end, this will imply that more users can access to the media, as the receiver would be able to manage the collisions that will occur in the frequency domain, being the case of a Non-Orthogonal-Multiple-Access. Second, as there is an increasing interest in rapidly varying channels, we focus on this aspect proposing a frame structure for LTE in which we are able to track better the channel in case it has a low coherence time, that in combination with beamforming techniques will help the system to null interferences from other users and to increase the Signal to Interference and Noise Ratio (SINR) yielding to a lower BER. In the same chapter, in addition, we try to figure out which is the best power allocation with respect to the SNR to mix both training and data to even increase more the rate with respect to LTE without degrading the BER so much. We expect this work will be useful for the development of the technologies which are said that will improve our lifestyles

    ํฌ์†Œ์ธ์ง€๋ฅผ ์ด์šฉํ•œ ์ „์†ก๊ธฐ์ˆ  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2019. 2. ์‹ฌ๋ณ‘ํšจ.The new wave of the technology revolution, named the fifth wireless systems, is changing our daily life dramatically. These days, unprecedented services and applications such as driverless vehicles and drone-based deliveries, smart cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based personalized assistants are emerging. Communication mechanisms associated with these new applications and services are way different from traditional communications in terms of latency, energy efficiency, reliability, flexibility, and connection density. Since the current radio access mechanism cannot support these diverse services and applications, a new approach to deal with these relentless changes should be introduced. This compressed sensing (CS) paradigm is very attractive alternative to the conventional information processing operations including sampling, sensing, compression, estimation, and detection. To apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. In the last decade, CS techniques have spread rapidly in many applications such as medical imaging, machine learning, radar detection, seismology, computer science, statistics, and many others. Also, various wireless communication applications exploiting the sparsity of a target signal have been studied. Notable examples include channel estimation, interference cancellation, angle estimation, spectrum sensing, and symbol detection. The distinct feature of this work, in contrast to the conventional approaches exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to improve the quality of the communication systems. In the first part of the dissertation, we study the mapping data information into the sparse signal in downlink systems. We propose an approach, called sparse vector coding (SVC), suited for the short packet transmission. In SVC, since the data information is mapped to the position of sparse vector, whole data packet can be decoded by idenitifying nonzero positions of the sparse vector. From our simulations, we show that the packet error rate of SVC outperforms the conventional channel coding schemes at the URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC access by overlapping multiple SVC-based packets into the same resources. Using the spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission provides robustness against the co-channel interference and also provide comparable performance than other non-orthogonal multiple access (NOMA) schemes. By using the fact that SVC only identifies the support of sparse vector, we extend the SVC transmission without pilot transmission, called pilot-less SVC. Instead of using the support, we further exploit the magnitude of sparse vector for delivering additional information. This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC transmission scheme is to transform the small information into a sparse vector and map the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can be thought as a standing a few poles to the empty table. As long as the number of poles is small enough and the measurements contains enough information to find out the marked cell positions, accurate recovery of E-SVC packet can be guaranteed. In the second part of this dissertation, we turn our attention to make sparsification of the non-sparse signal, especially for the pilot transmission and channel estimation. Unlike the conventional scheme where the pilot signal is transmitted without modification, the pilot signals are sent after the beamforming in the proposed technique. This work is motivated by the observation that the pilot overhead must scale linearly with the number of taps in CIR vector and the number of transmit antennas so that the conventional pilot transmission is not an appropriate option for the IoT devices. Primary goal of the proposed scheme is to minimize the nonzero entries of a time-domain channel vector by the help of multiple antennas at the basestation. To do so, we apply the time-domain sparse precoding, where each precoded channel propagates via fewer tap than the original channel vector. The received channel vector of beamformed pilots can be jointly estimated by the sparse recovery algorithm.5์„ธ๋Œ€ ๋ฌด์„ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ํ˜์‹ ์€ ๋ฌด์ธ ์ฐจ๋Ÿ‰ ๋ฐ ํ•ญ๊ณต๊ธฐ, ์Šค๋งˆํŠธ ๋„์‹œ ๋ฐ ๊ณต์žฅ, ์›๊ฒฉ ์˜๋ฃŒ ์ง„๋‹จ ๋ฐ ์ˆ˜์ˆ , ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋งŸ์ถคํ˜• ์ง€์›๊ณผ ๊ฐ™์€ ์ „๋ก€ ์—†๋Š” ์„œ๋น„์Šค ๋ฐ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ฐ ์„œ๋น„์Šค์™€ ๊ด€๋ จ๋œ ํ†ต์‹  ๋ฐฉ์‹์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„, ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ, ์‹ ๋ขฐ์„ฑ, ์œ ์—ฐ์„ฑ ๋ฐ ์—ฐ๊ฒฐ ๋ฐ€๋„ ์ธก๋ฉด์—์„œ ๊ธฐ์กด ํ†ต์‹ ๊ณผ ๋งค์šฐ ๋‹ค๋ฅด๋‹ค. ํ˜„์žฌ์˜ ๋ฌด์„  ์•ก์„ธ์Šค ๋ฐฉ์‹์„ ๋น„๋กฏํ•œ ์ข…๋ž˜์˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๊ทผ์— sparse processing๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ํ‘œ๋ณธ ์ถ”์ถœ, ๊ฐ์ง€, ์••์ถ•, ํ‰๊ฐ€ ๋ฐ ํƒ์ง€๋ฅผ ํฌํ•จํ•œ ๊ธฐ์กด์˜ ์ •๋ณด ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๋Œ€์ฒด๊ธฐ์ˆ ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๋‚œ 10๋…„ ๋™์•ˆ compressed sensing (CS)๊ธฐ๋ฒ•์€ ์˜๋ฃŒ์˜์ƒ, ๊ธฐ๊ณ„ํ•™์Šต, ํƒ์ง€, ์ปดํ“จํ„ฐ ๊ณผํ•™, ํ†ต๊ณ„ ๋ฐ ๊ธฐํƒ€ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์‹ ํ˜ธ์˜ ํฌ์†Œ์„ฑ(sparsity)๋ฅผ ์ด์šฉํ•˜๋Š” CS ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๋ฌด์„  ํ†ต์‹ ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฃผ๋ชฉํ• ๋งŒํ•œ ์˜ˆ๋กœ๋Š” ์ฑ„๋„ ์ถ”์ •, ๊ฐ„์„ญ ์ œ๊ฑฐ, ๊ฐ๋„ ์ถ”์ •, ๋ฐ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ์ง€๊ฐ€ ์žˆ์œผ๋ฉฐ ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๋Š” ์ฃผ์–ด์ง„ ์‹ ํ˜ธ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ณธ๋ž˜์˜ ํฌ์†Œ์„ฑ์— ์ฃผ๋ชฉํ•˜์˜€์œผ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ์ธ์œ„์ ์œผ๋กœ ์„ค๊ณ„๋œ ํฌ์†Œ์„ฑ์„ ์ด์šฉํ•˜์—ฌ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ์„  ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์šด๋งํฌ ์ „์†ก์—์„œ ํฌ์†Œ ์‹ ํ˜ธ ๋งคํ•‘์„ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ ์งง์€ ํŒจํ‚ท (short packet) ์ „์†ก์— ์ ํ•ฉํ•œ CS ์ ‘๊ทผ๋ฒ•์„ ํ™œ์šฉํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ์ˆ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์ฝ”๋”ฉ (sparse vector coding, SVC)์€ ๋ฐ์ดํ„ฐ ์ •๋ณด๊ฐ€ ์ธ๊ณต์ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์˜ nonzero element์˜ ์œ„์น˜์— ๋งคํ•‘ํ•˜์—ฌ ์ „์†ก๋œ ๋ฐ์ดํ„ฐ ํŒจํ‚ท์€ ํฌ์†Œ๋ฒกํ„ฐ์˜ 0์ด ์•„๋‹Œ ์œ„์น˜๋ฅผ ์‹๋ณ„ํ•จ์œผ๋กœ ์›์‹ ํ˜ธ ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ถ„์„๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” SVC ๊ธฐ๋ฒ•์˜ ํŒจํ‚ท ์˜ค๋ฅ˜๋ฅ ์€ ultra-reliable and low latency communications (URLLC) ์„œ๋น„์Šค๋ฅผ ์ง€์›์„ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ์ฑ„๋„์ฝ”๋”ฉ๋ฐฉ์‹๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ SVC๊ธฐ์ˆ ์„ ๋‹ค์Œ์˜ ์„ธ๊ฐ€์ง€ ์˜์—ญ์œผ๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ์ฒซ์งธ๋กœ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ SVC ๊ธฐ๋ฐ˜ ํŒจํ‚ท์„ ๋™์ผํ•œ ์ž์›์— ๊ฒน์น˜๊ฒŒ ์ „์†กํ•จ์œผ๋กœ ์ƒํ–ฅ๋งํฌ์—์„œ ๋Œ€๊ทœ๋ชจ ์ „์†ก์„ ์ง€์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ค‘์ฒฉ๋œ ํฌ์†Œ๋ฒกํ„ฐ๋ฅผ ๋‹ค์ค‘์‚ฌ์šฉ์ž CS ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฑ„๋„ ๊ฐ„์„ญ์— ๊ฐ•์ธํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋น„์ง๊ต ๋‹ค์ค‘ ์ ‘์† (NOMA) ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘˜์งธ๋กœ, SVC ๊ธฐ์ˆ ์ด ํฌ์†Œ ๋ฒกํ„ฐ์˜ support๋งŒ์„ ์‹๋ณ„ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์ด ํ•„์š”์—†๋Š” pilotless-SVC ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฑ„๋„ ์ •๋ณด๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ์—๋„ ํฌ์†Œ ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ๋Š” ์ฑ„๋„์˜ ํฌ๊ธฐ์— ๋น„๋ก€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— pilot์—†์ด ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์…‹์งธ๋กœ, ํฌ์†Œ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ์— ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ์ „์†กํ•จ์œผ๋กœ ๋ณต์› ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ค๋Š” enhanced SVC (E-SVC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ E-SVC ์ „์†ก ๋ฐฉ์‹์˜ ํ•ต์‹ฌ ์•„๋””๋””์–ด๋Š” ์งง์€ ํŒจํ‚ท์„ ์ „์†ก๋˜๋Š” ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ์ •๋ณด ๋ณต์›์„ ๋ณด์กฐํ•˜๋Š” ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ (magnitude)๋กœ ๋งคํ•‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, SVC ๊ธฐ์ˆ ์„ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ, ์ฑ„๋„ ์ถ”์ •์„ ์œ„ํ•ด ์ฑ„๋„ ์ž„ํŽ„์Šค ์‘๋‹ต์˜ ์‹ ํ˜ธ๋ฅผ ํฌ์†Œํ™”ํ•˜๋Š” ํ”„๋ฆฌ์ฝ”๋”ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ์„ ํ”„๋กœ์ฝ”๋”ฉ ์—†์ด ์ „์†ก๋˜๋Š” ๊ธฐ์กด์˜ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ์ œ์•ˆ๋œ ๊ธฐ์ˆ ์—์„œ๋Š” ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ๋ฅผ ๋น”ํฌ๋ฐํ•˜์—ฌ ์ „์†กํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๊ธฐ์ง€๊ตญ์—์„œ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ฑ„๋„ ์‘๋‹ต์˜ 0์ด ์•„๋‹Œ ์š”์†Œ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์‹œ๊ฐ„ ์˜์—ญ ํฌ์†Œ ํ”„๋ฆฌ์ฝ”๋”ฉ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋” ์ ํ™•ํ•œ ์ฑ„๋„ ์ถ”์ •์„ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋” ์ ์€ ํŒŒ์ผ๋Ÿฟ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์ฑ„๋„ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค.Abstract i Contents iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three Key Services in 5G systems . . . . . . . . . . . . . . . 2 1.1.2 Sparse Processing in Wireless Communications . . . . . . . . 4 1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Sparse Vector Coding for Downlink Ultra-reliable and Low Latency Communications 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 URLLC Service Requirements . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Ultra-High Reliability . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 URLLC Physical Layer in 5G NR . . . . . . . . . . . . . . . . . . . 18 2.3.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes . 20 2.3.3 Solutions to the Coexistence Problem . . . . . . . . . . . . . 22 2.4 Short-sized Packet in LTE-Advanced Downlink . . . . . . . . . . . . 24 2.5 Sparse Vector Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 SVC Encoding and Transmission . . . . . . . . . . . . . . . 25 2.5.2 SVC Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Identification of False Alarm . . . . . . . . . . . . . . . . . . 33 2.6 SVC Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 High-order Modulation . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Diversity Transmission . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 SVC without Pilot . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.5 Threshold to Prevent False Alarm Event . . . . . . . . . . . . 51 2.8 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Sparse Vector Coding for Uplink Massive Machine-type Communications 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Uplink NOMA transmission for mMTC . . . . . . . . . . . . . . . . 61 3.3 Sparse Vector Coding based NOMA for mMTC . . . . . . . . . . . . 63 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . 66 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Pilot-less Sparse Vector Coding for Short Packet Transmission 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Pilot-less Sparse Vector Coding Processing . . . . . . . . . . . . . . 75 4.2.1 SVC Processing with Pilot Symbols . . . . . . . . . . . . . . 75 4.2.2 Pilot-less SVC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 PL-SVC Decoding in Multiple Basestation Antennas . . . . . 78 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Joint Analog and Quantized Feedback via Sparse Vector Coding 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 System Model for Joint Spase Vector Coding . . . . . . . . . . . . . 86 5.3 Sparse Recovery Algorithm and Performance Analysis . . . . . . . . 90 5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Linear Interpolation of Sensing Information . . . . . . . . . . 96 5.4.2 Linear Combined Feedback . . . . . . . . . . . . . . . . . . 96 5.4.3 One-shot Packet Transmission . . . . . . . . . . . . . . . . . 96 5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Sparse Beamforming for Enhanced Mobile Broadband Communications 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.1 Increase the number of transmit antennas . . . . . . . . . . . 102 6.1.2 2D active antenna system (AAS) . . . . . . . . . . . . . . . . 103 6.1.3 3D channel environment . . . . . . . . . . . . . . . . . . . . 104 6.1.4 RS transmission for CSI acquisition . . . . . . . . . . . . . . 106 6.2 System Design and Standardization of FD-MIMO Systems . . . . . . 107 6.2.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 Antenna configurations . . . . . . . . . . . . . . . . . . . . . 108 6.2.3 TXRU architectures . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 New CSI-RS transmission strategy . . . . . . . . . . . . . . . 112 6.2.5 CSI feedback mechanisms for FD-MIMO systems . . . . . . 114 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 Beamformed Pilot Transmission . . . . . . . . . . . . . . . . 117 6.4 Sparsification of Pilot Beamforming . . . . . . . . . . . . . . . . . . 118 6.4.1 Time-domain System Model without Pilot Beamforming . . . 119 6.4.2 Pilot Beamforming . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Channel Estimation of Beamformed Pilots . . . . . . . . . . . . . . . 124 6.5.1 Recovery using Multiple Measurement Vector . . . . . . . . . 124 6.5.2 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 130 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 Conclusion 136 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139 Abstract (In Korean) 152Docto

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the networkโ€™s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    ยฉ 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    A White Paper on Broadband Connectivity in 6G

    Get PDF
    Executive Summary This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized not only to deliver better broadband services in urban areas, but also to provide full-coverage broadband connectivity must be one of the key outcomes of 6G

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position
    corecore