1,861 research outputs found

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    Robust equalization of multichannel acoustic systems

    Get PDF
    In most real-world acoustical scenarios, speech signals captured by distant microphones from a source are reverberated due to multipath propagation, and the reverberation may impair speech intelligibility. Speech dereverberation can be achieved by equalizing the channels from the source to microphones. Equalization systems can be computed using estimates of multichannel acoustic impulse responses. However, the estimates obtained from system identification always include errors; the fact that an equalization system is able to equalize the estimated multichannel acoustic system does not mean that it is able to equalize the true system. The objective of this thesis is to propose and investigate robust equalization methods for multichannel acoustic systems in the presence of system identification errors. Equalization systems can be computed using the multiple-input/output inverse theorem or multichannel least-squares method. However, equalization systems obtained from these methods are very sensitive to system identification errors. A study of the multichannel least-squares method with respect to two classes of characteristic channel zeros is conducted. Accordingly, a relaxed multichannel least- squares method is proposed. Channel shortening in connection with the multiple- input/output inverse theorem and the relaxed multichannel least-squares method is discussed. Two algorithms taking into account the system identification errors are developed. Firstly, an optimally-stopped weighted conjugate gradient algorithm is proposed. A conjugate gradient iterative method is employed to compute the equalization system. The iteration process is stopped optimally with respect to system identification errors. Secondly, a system-identification-error-robust equalization method exploring the use of error models is presented, which incorporates system identification error models in the weighted multichannel least-squares formulation

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Noncircular Waveforms Exploitation for Radar Signal Processing : Survey and Study for Agile Radar Waveform

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    A Summative Comparison of Blind Channel Estimation Techniques for Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    The OFDM techniquei.e. Orthogonal frequency division multiplexing has become prominent in wireless communication since its instruction in 1950’s due to its feature of combating the multipath fading and other losses. In an OFDM system, a large number of orthogonal, overlapping, narrow band subchannels or subcarriers, transmitted in parallel, divide the available transmission bandwidth. The separation of the subcarriers is theoretically optimal such that there is a very compact spectral utilization. This paper reviewed the possible approaches for blind channel estimation in the light of the improved performance in terms of speed of convergence and complexity. There were various researches which adopted the ways for channel estimation for Blind, Semi Blind and trained channel estimators and detectors. Various ways of channel estimation such as Subspace, iteration based, LMSE or MSE based (using statistical methods), SDR, Maximum likelihood approach, cyclostationarity, Redundancy and Cyclic prefix based. The paper reviewed all the above approaches in order to summarize the outcomes of approaches aimed at optimum performance for channel estimation in OFDM system

    A Comprehensive Review on Various Estimation Techniques for Multi Input Multi Output Channel

    Get PDF
    لقد تطورت مشكلة تقدير القناة اللاسلكية بسبب بعض التأثيرات غير المرغوب فيها للخواص الفيزيائية للقناة على الإشارات المرسلة. في نهاية المستقبل، التشوه، والتأخير، والتوهين، والتداخلات، ونوبات الطور هي أكثر المشكلات التي تواجهها مع الإشارات المستقبلة. من أجل التغلب على تأثيرات القناة وتوفير جودة كاملة تقريبًا لنقل البيانات، يلزم تقدير معلومات القناة. في أنظمة المخرجات متعددة المدخلات والمخرجات (MIMO)، يعتبر تقدير القناة خطوة أكثر تعقيدًا مقارنة بأنظمة المخرجات ذات المدخلات المفردة، SISO، نظرًا لأن عدد القنوات الفرعية التي تحتاج إلى تقدير أكبر بكثير من انظمة SISO. الهدف الأساسي من هذه الورقة البحثية هو مراجعة شاملة لاغلب الخوارزميات الشهيرة والفعالة التي تم ابتكارها لحل مشكلة تقدير قناة MIMO في أنظمة الاتصالات اللاسلكية. في هذه الورقة، تم تصنيف هذه التقنيات إلى ثلاث مجموعات: غير المكفوفين، شبه الأعمى وتقدير أعمى. لكل مجموعة، يتم تقديم توضيح مختصر لخوارزميات التقدير المألوفة. وأخيرًا، نقارن بين هذه التقنيات استنادًا إلى التعقيد الحسابي والكمون ودقة التقدير.The problem of wireless channel estimation has been evolving due to some undesirable effects of channel physical properties on transmitted signals. At the receiver end, distortions, delays, attenuations, interferences, and phase shifts are the most issues encounter together with the received signals. In order to overcome channel effects and provide almost a perfect quality of data transmission, channel parameter estimation is needed. In Multiple Input-Multiple Output systems (MIMO), channel estimation is a more complicated step as compared with the Single Input-Single Output systems, SISO, because of the fact that the number of sub-channels that needs estimate is much greater than SISO systems. The fundamental objective of this research paper is to go over the famous and efficient algorithms that have been innovated to solve the problem of MIMO channel estimation in wireless communication systems. In this paper, these techniques have been classified into three groups: non-blind, semi-blind and blind estimation. For each group, a brief illustration is presented for familiar estimation algorithms. Finally, we compare between these techniques based on computational complexity, latency and estimation accuracy
    corecore