56 research outputs found

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Channel Estimation and Equalization for Cooperative Communication

    Get PDF
    The revolutionary concept of space-time coding introduced in the last decade has demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degrees of freedom offered by the spatial dimension of the wireless channel. However, the use of antenna arrays is not practical for deployment in some practical scenarios, e. g. , sensor networks, due to space and power limitations. A new form of realizing transmit diversity has been recently introduced under the name of user cooperation or cooperative diversity. The basic idea behind cooperative diversity rests on the observation that in a wireless environment, the signal transmitted by the source node is overheard by other nodes, which can be defined as "partners" or "relays". The source and its partners can jointly process and transmit their information, creating a "virtual antenna array" and therefore emulating transmit diversity. Most of the ongoing research efforts in cooperative diversity assume frequency flat channels with perfect channel knowledge. However, in practical scenarios, e. g. broadband wireless networks, these assumptions do not apply. Frequency-selective fading and imperfect channel knowledge should be considered as a more realistic channel model. The development of equalization and channel estimation algorithms play a crucial element in the design of digital receivers as their accuracy determine the overall performance. This dissertation creates a framework for designing and analyzing various time and frequency domain equalization schemes, i. e. distributed time reversal (D-TR) STBC, distributed single carrier frequency domain (D-SC-FDE) STBC, and distributed orthogonal frequency division multiplexing (D-OFDM) STBC schemes, for broadband cooperative communication systems. Exploiting the orthogonally embedded in D-STBCs, we were able to maintain low-decoding complexity for all underlying schemes, thus, making them excellent candidates for practical scenarios, such as multi-media broadband communication systems. Furthermore, we propose and analyze various non-coherent and channel estimation algorithms to improve the quality and reliability of wireless communication networks. Specifically, we derive a non-coherent decoding rule which can be implemented in practice by a Viterbi-type algorithm. We demonstrate through the derivation of a pairwise error probability expression that the proposed non-coherent detector guarantees full diversity. Although this decoding rule has been derived assuming quasi-static channels, its inherent channel tracking capability allows its deployment over time-varying channels with a promising performance as a sub-optimal solution. As a possible alternative to non-coherent detection, we also investigate the performance of mismatched-coherent receiver, i. e. , coherent detection with imperfect channel estimation. Our performance analysis demonstrates that the mismatched-coherent receiver is able to collect the full diversity as its non-coherent competitor over quasi-static channels. Finally, we investigate and analyze the effect of multiple antennas deployment at the cooperating terminals assuming different relaying techniques. We derive pairwise error probability expressions quantifying analytically the impact of multiple antenna deployment at the source, relay and/or destination terminals on the diversity order for each of the relaying methods under consideration

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    • …
    corecore