1,852 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Enhancing the coexistence of LTE and Wi-Fi in unlicensed spectrum through convolutional neural networks

    Get PDF
    Over the last years, the ever-growing wireless traffic has pushed the mobile community to investigate solutions that can assist in more efficient management of the wireless spectrum. Towards this direction, the long-term evolution (LIE) operation in the unlicensed spectrum has been proposed. Targeting a global solution that respects the regional requirements, 3GPP announced the standard of LIE licensed assisted access (LAA). However, LIE LAA may result in unfair coexistence with Wi-Fi, especially when Wi-Fi does not use frame aggregation. Targeting a technique that enables fair channel access, the mLTE-U scheme has been proposed. According to mLTE-U, LTE uses a variable transmission opportunity, followed by a variable muting period that can be exploited by other networks to transmit. For the selection of the appropriate mLTE-U configuration, information about the dynamically changing wireless environment is required. To this end, this paper proposes a convolutional neural network (CNN) that is trained to perform identification of LIE and Wi-Fi transmissions. In addition, it can identify the hidden terminal effect caused by multiple LTE transmissions, multiple Wi-Fi transmissions, or concurrent LIE and Wi-Fi transmissions. The designed CNN has been trained and validated using commercial off-the-shelf LIE and Wi-Fi hardware equipment and for two wireless signal representations, namely, in-phase and quadrature samples and frequency domain representation through fast Fourier transform. The classification accuracy of the two resulting CNNs is tested for different signal to noise ratio values. The experimentation results show that the data representation affects the accuracy of CNN. The obtained information from CNN can be exploited by the mLTE-U scheme in order to provide fair coexistence between the two wireless technologies

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Wide-band spectrum sensing with convolution neural network using spectral correlation function

    Get PDF
    Recognition of signals is a spectrum sensing challenge requiring simultaneous detection, temporal and spectral localization, and classification. In this approach, we present the convolution neural network (CNN) architecture, a powerful portrayal of the cyclo-stationarity trademark, for remote range detection and sign acknowledgment. Spectral correlation function is used along with CNN. In two scenarios, method-1 and method-2, the suggested approach is used to categorize wireless signals without any previous knowledge. Signals are detected and classified simultaneously in method-1. In method-2, the sensing and classification procedures take place sequentially. In contrast to conventional spectrum sensing techniques, the proposed CNN technique need not bother with a factual judgment process or past information on the signs’ separating qualities. The method beats both conventional sensing methods and signal-classifying deep learning networks when used to analyze real-world, over-the-air data in cellular bands. Despite the implementation’s emphasis on cellular signals, any signal having cyclo-stationary properties may be detected and classified using the provided approach. The proposed model has achieved more than 90% of testing accuracy at 15 dB
    • …
    corecore