431 research outputs found

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Spectrum Sensing Algorithms for Cognitive Radio Applications

    Get PDF
    Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies

    Vibration Monitoring: Gearbox identification and faults detection

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    When Decision Meets Estimation: Theory and Applications

    Get PDF
    In many practical problems, both decision and estimation are involved. This dissertation intends to study the relationship between decision and estimation in these problems, so that more accurate inference methods can be developed. Hybrid estimation is an important formulation that deals with state estimation and model structure identification simultaneously. Multiple-model (MM) methods are the most widelyused tool for hybrid estimation. A novel approach to predict the Internet end-to-end delay using MM methods is proposed. Based on preliminary analysis of the collected end-to-end delay data, we propose an off-line model set design procedure using vector quantization (VQ) and short-term time series analysis so that MM methods can be applied to predict on-line measurement data. Experimental results show that the proposed MM predictor outperforms two widely used adaptive filters in terms of prediction accuracy and robustness. Although hybrid estimation can identify model structure, it mainly focuses on the estimation part. When decision and estimation are of (nearly) equal importance, a joint solution is preferred. By noticing the resemblance, a new Bayes risk is generalized from those of decision and estimation, respectively. Based on this generalized Bayes risk, a novel, integrated solution to decision and estimation is introduced. Our study tries to give a more systematic view on the joint decision and estimation (JDE) problem, which we believe the work in various fields, such as target tracking, communications, time series modeling, will benefit greatly from. We apply this integrated Bayes solution to joint target tracking and classification, a very important topic in target inference, with simplified measurement models. The results of this new approach are compared with two conventional strategies. At last, a surveillance testbed is being built for such purposes as algorithm development and performance evaluation. We try to use the testbed to bridge the gap between theory and practice. In the dissertation, an overview as well as the architecture of the testbed is given and one case study is presented. The testbed is capable to serve the tasks with decision and/or estimation aspects, and is helpful for the development of the JDE algorithms

    When Decision Meets Estimation: Theory and Applications

    Get PDF
    In many practical problems, both decision and estimation are involved. This dissertation intends to study the relationship between decision and estimation in these problems, so that more accurate inference methods can be developed. Hybrid estimation is an important formulation that deals with state estimation and model structure identification simultaneously. Multiple-model (MM) methods are the most widelyused tool for hybrid estimation. A novel approach to predict the Internet end-to-end delay using MM methods is proposed. Based on preliminary analysis of the collected end-to-end delay data, we propose an off-line model set design procedure using vector quantization (VQ) and short-term time series analysis so that MM methods can be applied to predict on-line measurement data. Experimental results show that the proposed MM predictor outperforms two widely used adaptive filters in terms of prediction accuracy and robustness. Although hybrid estimation can identify model structure, it mainly focuses on the estimation part. When decision and estimation are of (nearly) equal importance, a joint solution is preferred. By noticing the resemblance, a new Bayes risk is generalized from those of decision and estimation, respectively. Based on this generalized Bayes risk, a novel, integrated solution to decision and estimation is introduced. Our study tries to give a more systematic view on the joint decision and estimation (JDE) problem, which we believe the work in various fields, such as target tracking, communications, time series modeling, will benefit greatly from. We apply this integrated Bayes solution to joint target tracking and classification, a very important topic in target inference, with simplified measurement models. The results of this new approach are compared with two conventional strategies. At last, a surveillance testbed is being built for such purposes as algorithm development and performance evaluation. We try to use the testbed to bridge the gap between theory and practice. In the dissertation, an overview as well as the architecture of the testbed is given and one case study is presented. The testbed is capable to serve the tasks with decision and/or estimation aspects, and is helpful for the development of the JDE algorithms
    • …
    corecore