12,928 research outputs found

    Modeling and performance evaluation of stealthy false data injection attacks on smart grid in the presence of corrupted measurements

    Full text link
    The false data injection (FDI) attack cannot be detected by the traditional anomaly detection techniques used in the energy system state estimators. In this paper, we demonstrate how FDI attacks can be constructed blindly, i.e., without system knowledge, including topological connectivity and line reactance information. Our analysis reveals that existing FDI attacks become detectable (consequently unsuccessful) by the state estimator if the data contains grossly corrupted measurements such as device malfunction and communication errors. The proposed sparse optimization based stealthy attacks construction strategy overcomes this limitation by separating the gross errors from the measurement matrix. Extensive theoretical modeling and experimental evaluation show that the proposed technique performs more stealthily (has less relative error) and efficiently (fast enough to maintain time requirement) compared to other methods on IEEE benchmark test systems.Comment: Keywords: Smart grid, False data injection, Blind attack, Principal component analysis (PCA), Journal of Computer and System Sciences, Elsevier, 201

    Mitigation of Side-Effect Modulation in Optical OFDM VLC Systems

    Full text link
    Side-effect modulation (SEM) has the potential to be a significant source of interference in future visible light communication (VLC) systems. SEM is a variation in the intensity of the light emitted by a luminaire and is usually a side-effect caused by the power supply used to drive the luminaires. For LED luminaires powered by a switched mode power supply, the SEM can be at much higher frequencies than that emitted by conventional incandescent or fluorescent lighting. It has been shown that the SEM caused by commercially available LED luminaires is often periodic and of low power. In this paper, we investigate the impact of typical forms of SEM on the performance of optical OFDM VLC systems; both ACO-OFDM and DCO-OFDM are considered. Our results show that even low levels of SEM power can significantly degrade the bit-error-rate performance. To solve this problem, an SEM mitigation scheme is described. The mitigation scheme is decision-directed and is based on estimating and subtracting the fundamental component of the SEM from the received signal. We describe two forms of the algorithm; one uses blind estimation while the other uses pilot-assisted estimation based on a training sequence. Decision errors, resulting in decision noise, limit the performance of the blind estimator even when estimation is based on very long signals. However, the pilot system can achieve more accurate estimations, thus better performance. Results are first presented for typical SEM waveforms for the case where the fundamental frequency of the SEM is known. The algorithms are then extended to include a frequency estimation step and the mitigation algorithm is shown also to be effective in this case

    Blind deconvolution of sparse pulse sequences under a minimum distance constraint: a partially collapsed Gibbs sampler method

    Get PDF
    For blind deconvolution of an unknown sparse sequence convolved with an unknown pulse, a powerful Bayesian method employs the Gibbs sampler in combination with a Bernoulli–Gaussian prior modeling sparsity. In this paper, we extend this method by introducing a minimum distance constraint for the pulses in the sequence. This is physically relevant in applications including layer detection, medical imaging, seismology, and multipath parameter estimation. We propose a Bayesian method for blind deconvolution that is based on a modified Bernoulli–Gaussian prior including a minimum distance constraint factor. The core of our method is a partially collapsed Gibbs sampler (PCGS) that tolerates and even exploits the strong local dependencies introduced by the minimum distance constraint. Simulation results demonstrate significant performance gains compared to a recently proposed PCGS. The main advantages of the minimum distance constraint are a substantial reduction of computational complexity and of the number of spurious components in the deconvolution result

    Sensitive White Space Detection with Spectral Covariance Sensing

    Full text link
    This paper proposes a novel, highly effective spectrum sensing algorithm for cognitive radio and whitespace applications. The proposed spectral covariance sensing (SCS) algorithm exploits the different statistical correlations of the received signal and noise in the frequency domain. Test statistics are computed from the covariance matrix of a partial spectrogram and compared with a decision threshold to determine whether a primary signal or arbitrary type is present or not. This detector is analyzed theoretically and verified through realistic open-source simulations using actual digital television signals captured in the US. Compared to the state of the art in the literature, SCS improves sensitivity by 3 dB for the same dwell time, which is a very significant improvement for this application. Further, it is shown that SCS is highly robust to noise uncertainty, whereas many other spectrum sensors are not

    Blind Minimax Estimation

    Full text link
    We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze blind minimax estimators (BMEs), which consist of a bounded parameter set minimax estimator, whose parameter set is itself estimated from measurements. Thus, one does not require any prior assumption or knowledge, and the proposed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-squares estimator, i.e., they achieve lower mean-squared error for any value of the parameter vector. Both Stein's estimator and its positive-part correction can be derived within the blind minimax framework. Furthermore, our approach can be readily extended to a wider class of estimation problems than Stein's estimator, which is defined only for white noise and non-transformed measurements. We show through simulations that the BMEs generally outperform previous extensions of Stein's technique.Comment: 12 pages, 7 figure

    Synchronisation of the superimposed training method for channel estimation in the presence of DC-offset

    Get PDF
    The superimposed training method estimates the channel from the induced first-order cyclostationary statistics exhibited by the received signal. In this paper, using vector space decomposition, we show that the information needed for training sequence synchronisation, and for DC-offset estimation, can be extracted from the first-order cyclostationary statistics as well. Necessary and sufficient conditions for channel computation and equalisation are derived, when training sequence synchronisation and DC-offset removal are required. The computational burden of the practical implementation of the method presented here is much lighter than for existing algorithms. At the same time, simulation results show that the performance, in terms of the MSE of the channel estimates and BER, is not diminishedwhen compared to these existing algorithms
    • 

    corecore