11,398 research outputs found

    Blind equalization of DS-CDMA and MC-CDMA modulations in time-variant frequency selective channels

    Get PDF
    The paper addresses the blind equalization problem of spread spectrum modulations in the presence of fast time-variant frequency-selective channels. The basic assumption of the paper is that the channel response exhibits fast changes. A second goal of the paper is to force the definition of a universal CDMA blind equalization scheme that is capable of performing for DS-CDMA or multi-carrier CDMA signal modulations without any modification in the equalizer. The formulation of the equalization scheme allows the consideration of temporal and/or spatial diversity front-end receivers. The result is a high-performance system that uses a deterministic blind criterion to equalize the channel, avoiding the use of stochastic methods. The proposed technique performs direct channel equalization without previous channel estimation. Although the proposed equalizer in this work performs equalization at chip rate, this paper suggests a solution to achieve equalization at lower rates.Peer ReviewedPostprint (published version

    Diversity in mobile communications for blind detection of block-coded modulations

    Get PDF
    Spatial, temporal, and frequency diversity structures are analyzed to address the blind equalization problem in the presence of time-variant frequency selective channels. The aim of the paper is to present equalization schemes useful in front of fast changing channel responses. The best solution is a deterministic blind criterion that allows direct channel equalization and symbol detection. The main contribution of this paper is to present deterministic blind equalization schemes in CDMA systems (frequency diversity) to reduce the impact of the time-variant frequency selective channel.Peer ReviewedPostprint (published version

    Adaptive Blind Channel Equalization for Mobile Multimedia Communication

    Full text link
    In the last decade much research effort has been dedicated to deal with the issues of wireless multimedia communications, in particular bandwidth limitation and channel impairment. We have recently proposed a new scheme for blind equalization called sinusoidally-distributed dither signed-error constant modulus algorithm (S-DSE-CMA). In this paper, we test this scheme for wireless image transmission. Simulation showed that the low complexity of implementation and fast convergence rate are the major advantages of employing the new scheme for multimedia applications. It is also shown, from perceptual-based analysis as well as objective measurements using peak signal-to-noise ratio (PSNR) of the recovered image, that the recently-proposed blind adaptive equalization algorithm outperforms existing methods, e.g., uniformly-distributed DSE-CMA

    Pilot Decontamination in CMT-based Massive MIMO Networks

    Full text link
    Pilot contamination problem in massive MIMO networks operating in time-division duplex (TDD) mode can limit their expected capacity to a great extent. This paper addresses this problem in cosine modulated multitone (CMT) based massive MIMO networks; taking advantage of their so-called blind equalization property. We extend and apply the blind equalization technique from single antenna case to multi-cellular massive MIMO systems and show that it can remove the channel estimation errors (due to pilot contamination effect) without any need for cooperation between different cells or transmission of additional training information. Our numerical results advocate the efficacy of the proposed blind technique in improving the channel estimation accuracy and removal of the residual channel estimation errors caused by the users of the other cells.Comment: Accepted in ISWCS 201

    Semi-blind adaptive spatial equalisation for MIMO systems with high-order QAM signalling

    No full text
    This contribution investigates semi-blind adaptive spatial filtering or equalisation for multiple-input multiple-output (MIMO) systems that employ high-throughput quadrature amplitude modulation (QAM) signalling. A minimum number of training symbols, equal to the number of receivers (we assume that the number of transmitters is no more than that of receivers), are first utilized to provide a rough least squares channel estimate of the system's MIMO channel matrix for the initialization of the spatial equalizers' weight vectors. A constant modulus algorithm aided soft decision-directed blind algorithm, originally derived for blind equalization of single-input single-output and single-input multiple-output systems employing high-order QAM signalling, is then extended to adapt the spatial equalizers for MIMO systems. This semi-blind scheme has a low computational complexity, and our simulation results demonstrate that it converges fast to the minimum mean-square-error spatial equalization solution

    Blind equalization based on spatial and temporal diversity in block coded modulations

    Get PDF
    Linear block codes can be applied in spatial and/or temporal diversity receivers in order to develop high performance schemes for blind equalization in mobile communications. The proposed technique uses the structure of the encoded transmitted information (with redundancy) to achieve equalization schemes based on a deterministic criterion. Simulations show that the proposed technique is more efficient than other schemes that follow similar equalizer structures. The result is an algorithm that provides the design of blind channel equalizers in low EbNo scenarios.Peer ReviewedPostprint (published version
    • 

    corecore