5,803 research outputs found

    Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

    Full text link
    This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adapt local features with considerable variability, yielding results far out of reach of classic generative MRF methods.Comment: 9 pages, 9 figure

    SurReal: enhancing Surgical simulation Realism using style transfer

    Get PDF
    Surgical simulation is an increasingly important element of surgical education. Using simulation can be a means to address some of the significant challenges in developing surgical skills with limited time and resources. The photo-realistic fidelity of simulations is a key feature that can improve the experience and transfer ratio of trainees. In this paper, we demonstrate how we can enhance the visual fidelity of existing surgical simulation by performing style transfer of multi-class labels from real surgical video onto synthetic content. We demonstrate our approach on simulations of cataract surgery using real data labels from an existing public dataset. Our results highlight the feasibility of the approach and also the powerful possibility to extend this technique to incorporate additional temporal constraints and to different applications

    Controllable Artistic Text Style Transfer via Shape-Matching GAN

    Full text link
    Artistic text style transfer is the task of migrating the style from a source image to the target text to create artistic typography. Recent style transfer methods have considered texture control to enhance usability. However, controlling the stylistic degree in terms of shape deformation remains an important open challenge. In this paper, we present the first text style transfer network that allows for real-time control of the crucial stylistic degree of the glyph through an adjustable parameter. Our key contribution is a novel bidirectional shape matching framework to establish an effective glyph-style mapping at various deformation levels without paired ground truth. Based on this idea, we propose a scale-controllable module to empower a single network to continuously characterize the multi-scale shape features of the style image and transfer these features to the target text. The proposed method demonstrates its superiority over previous state-of-the-arts in generating diverse, controllable and high-quality stylized text.Comment: Accepted by ICCV 2019. Code is available at https://williamyang1991.github.io/projects/ICCV2019/SMGAN.htm

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    Generative Image Inpainting with Contextual Attention

    Full text link
    Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feed-forward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces (CelebA, CelebA-HQ), textures (DTD) and natural images (ImageNet, Places2) demonstrate that our proposed approach generates higher-quality inpainting results than existing ones. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting.Comment: Accepted in CVPR 2018; add CelebA-HQ results; open sourced; interactive demo available: http://jhyu.me/dem

    LADN: Local Adversarial Disentangling Network for Facial Makeup and De-Makeup

    Full text link
    We propose a local adversarial disentangling network (LADN) for facial makeup and de-makeup. Central to our method are multiple and overlapping local adversarial discriminators in a content-style disentangling network for achieving local detail transfer between facial images, with the use of asymmetric loss functions for dramatic makeup styles with high-frequency details. Existing techniques do not demonstrate or fail to transfer high-frequency details in a global adversarial setting, or train a single local discriminator only to ensure image structure consistency and thus work only for relatively simple styles. Unlike others, our proposed local adversarial discriminators can distinguish whether the generated local image details are consistent with the corresponding regions in the given reference image in cross-image style transfer in an unsupervised setting. Incorporating these technical contributions, we achieve not only state-of-the-art results on conventional styles but also novel results involving complex and dramatic styles with high-frequency details covering large areas across multiple facial features. A carefully designed dataset of unpaired before and after makeup images is released.Comment: Qiao and Guanzhi have equal contribution. Accepted to ICCV 2019. Project website: https://georgegu1997.github.io/LADN-project-page

    TileGAN: Synthesis of Large-Scale Non-Homogeneous Textures

    Full text link
    We tackle the problem of texture synthesis in the setting where many input images are given and a large-scale output is required. We build on recent generative adversarial networks and propose two extensions in this paper. First, we propose an algorithm to combine outputs of GANs trained on a smaller resolution to produce a large-scale plausible texture map with virtually no boundary artifacts. Second, we propose a user interface to enable artistic control. Our quantitative and qualitative results showcase the generation of synthesized high-resolution maps consisting of up to hundreds of megapixels as a case in point.Comment: Code is available at http://github.com/afruehstueck/tileGA

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    Neural Style Transfer: A Review

    Full text link
    The seminal work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style. This process of using CNNs to render a content image in different styles is referred to as Neural Style Transfer (NST). Since then, NST has become a trending topic both in academic literature and industrial applications. It is receiving increasing attention and a variety of approaches are proposed to either improve or extend the original NST algorithm. In this paper, we aim to provide a comprehensive overview of the current progress towards NST. We first propose a taxonomy of current algorithms in the field of NST. Then, we present several evaluation methods and compare different NST algorithms both qualitatively and quantitatively. The review concludes with a discussion of various applications of NST and open problems for future research. A list of papers discussed in this review, corresponding codes, pre-trained models and more comparison results are publicly available at https://github.com/ycjing/Neural-Style-Transfer-Papers.Comment: Project page: https://github.com/ycjing/Neural-Style-Transfer-Paper

    Hierarchy Composition GAN for High-fidelity Image Synthesis

    Full text link
    Despite the rapid progress of generative adversarial networks (GANs) in image synthesis in recent years, the existing image synthesis approaches work in either geometry domain or appearance domain alone which often introduces various synthesis artifacts. This paper presents an innovative Hierarchical Composition GAN (HIC-GAN) that incorporates image synthesis in geometry and appearance domains into an end-to-end trainable network and achieves superior synthesis realism in both domains simultaneously. We design an innovative hierarchical composition mechanism that is capable of learning realistic composition geometry and handling occlusions while multiple foreground objects are involved in image composition. In addition, we introduce a novel attention mask mechanism that guides to adapt the appearance of foreground objects which also helps to provide better training reference for learning in geometry domain. Extensive experiments on scene text image synthesis, portrait editing and indoor rendering tasks show that the proposed HIC-GAN achieves superior synthesis performance qualitatively and quantitatively.Comment: 11 pages, 8 figure
    corecore