143 research outputs found

    Generation of Configuration Space Obstacles I: The Case of A Moving Sphere

    Get PDF

    B-spline surface techniques for solid modeling an application to computer-aided geometric design

    Get PDF
    One important area of Computer-Aided Geometric Design (CAGD) is concerned with the approximation and representation of the surfaces of solid objects. Accurately describing the shape of an object so that the description is useful to designers who must decide how to manipulate it is an important problem. B-spline techniques promise greater versatility in describing complex surfaces than other techniques, thus the B-spline surface is highlighted in the field of constructive solid geometric modeling. A method for drawing complex surfaces by using B-spline techniques is presented. The tensor product surface scheme is developed for constructing sculptured surfaces. Also, the basic principle of multivariate B-splines, i.e., nontensor product surfaces, the light of tomorrow in CAGD, is introduced

    Registration techniques for computer assisted orthopaedic surgery

    Get PDF
    The registration of 3D preoperative medical data to patients is a key task in developing computer assisted surgery systems. In computer assisted surgery, the patient in the operation theatre must be aligned with the coordinate system in which the preoperative data has been acquired, so that the planned surgery based on the preoperative data can be carried out under the guidance of the computer assisted surgery system.The aim of this research is to investigate registration algorithms for developing computer assisted bone surgery systems. We start with reference mark registration. New interpretations are given to the development of well knowm algorithms based on singular value decomposition, polar decomposition techniques and the unit quaternion representation of the rotation matrix. In addition, a new algorithm is developed based on the estimate of the rotation axis. For non-land mark registration, we first develop iterative closest line segment and iterative closest triangle patch registrations, similar to the well known iterative closest point registration, when the preoperative data are dense enough. We then move to the situation where the preoperative data are not dense enough. Implicit fitting is considered to interpolate the gaps between the data . A new ellipsoid fitting algorithm and a new constructive implicit fitting strategy are developed. Finally, a region to region matching procedure is proposed based on our novel constructive implicit fitting technique. Experiments demonstrate that the new algorithm is very stable and very efficient

    Visualizing Algebraic Curves: from Riemann to Grothendieck

    Get PDF
    We consider the smallest possible ramification. The corresponding pairs are represented by only finite set of points in the individual Hurwitz space, but the set of Riemann surfaces admitting the meromorphic functions with the smallest possible number of critical values is dense in the moduli space

    Tangent-ball techniques for shape processing

    Get PDF
    Shape processing defines a set of theoretical and algorithmic tools for creating, measuring and modifying digital representations of shapes.  Such tools are of paramount importance to many disciplines of computer graphics, including modeling, animation, visualization, and image processing.  Many applications of shape processing can be found in the entertainment and medical industries. In an attempt to improve upon many previous shape processing techniques, the present thesis explores the theoretical and algorithmic aspects of a difference measure, which involves fitting a ball (disk in 2D and sphere in 3D) so that it has at least one tangential contact with each shape and the ball interior is disjoint from both shapes. We propose a set of ball-based operators and discuss their properties, implementations, and applications.  We divide the group of ball-based operations into unary and binary as follows: Unary operators include: * Identifying details (sharp, salient features, constrictions) * Smoothing shapes by removing such details, replacing them by fillets and roundings * Segmentation (recognition, abstract modelization via centerline and radius variation) of tubular structures Binary operators include: * Measuring the local discrepancy between two shapes * Computing the average of two shapes * Computing point-to-point correspondence between two shapes * Computing circular trajectories between corresponding points that meet both shapes at right angles * Using these trajectories to support smooth morphing (inbetweening) * Using a curve morph to construct surfaces that interpolate between contours on consecutive slices The technical contributions of this thesis focus on the implementation of these tangent-ball operators and their usefulness in applications of shape processing. We show specific applications in the areas of animation and computer-aided medical diagnosis.  These algorithms are simple to implement, mathematically elegant, and fast to execute.Ph.D.Committee Chair: Jarek Rossignac; Committee Member: Greg Slabaugh; Committee Member: Greg Turk; Committee Member: Karen Liu; Committee Member: Maryann Simmon
    corecore