125 research outputs found

    Exploring Level Blending across Platformers via Paths and Affordances

    Full text link
    Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for discovering and generating content in novel domains via techniques such as level blending and domain transfer. In this paper, we build on these works and introduce a new PCGML approach for producing novel game content spanning multiple domains. We use a new affordance and path vocabulary to encode data from six different platformer games and train variational autoencoders on this data, enabling us to capture the latent level space spanning all the domains and generate new content with varying proportions of the different domains.Comment: 6 pages, 5 figures, 16th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2020

    Level Generation Through Large Language Models

    Full text link
    Large Language Models (LLMs) are powerful tools, capable of leveraging their training on natural language to write stories, generate code, and answer questions. But can they generate functional video game levels? Game levels, with their complex functional constraints and spatial relationships in more than one dimension, are very different from the kinds of data an LLM typically sees during training. Datasets of game levels are also hard to come by, potentially taxing the abilities of these data-hungry models. We investigate the use of LLMs to generate levels for the game Sokoban, finding that LLMs are indeed capable of doing so, and that their performance scales dramatically with dataset size. We also perform preliminary experiments on controlling LLM level generators and discuss promising areas for future work

    Deep learning for procedural content generation

    Get PDF
    Summarization: Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.Presented on: Neural Computing and Application

    Latent Combinational Game Design

    Full text link
    We present latent combinational game design -- an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We use Gaussian Mixture Variational Autoencoders (GMVAEs) which model the VAE latent space via a mixture of Gaussian components. Through supervised training, each component encodes levels from one game and lets us define blended games as linear combinations of these components. This enables generating new games that blend the input games and controlling the relative proportions of each game in the blend. We also extend prior blending work using conditional VAEs and compare against the GMVAE and additionally introduce a hybrid conditional GMVAE (CGMVAE) architecture which lets us generate whole blended levels and layouts. Results show that the above approaches can generate playable games that blend the input games in specified combinations. We use both platformers and dungeon-based games to demonstrate our results
    corecore