25 research outputs found

    Subjective and objective quality assessment of ancient degraded documents

    Get PDF
    Archiving, restoration and analysis of damaged manuscripts have been largely increased in recent decades. Usually, these documents are physically degraded because of aging and improper handing. They also cannot be processed manually because a massive volume of these documents exist in libraries and archives around the world. Therefore, automatic methodologies are needed to preserve and to process their content. These documents are usually processed through their images. Degraded document image processing is a difficult task mainly because of the existing physical degradations. While it can be very difficult to accurately locate and remove such distortions, analyzing the severity and type(s) of these distortions is feasible. This analysis provides useful information on the type and severity of degradations with a number of applications. The main contributions of this thesis are to propose models for objectively assessing the physical condition of document images and to classify their degradations. In this thesis, three datasets of degraded document images along with the subjective ratings for each image are developed. In addition, three no-reference document image quality assessment (NR-DIQA) metrics are proposed for historical and medieval document images. It should be mentioned that degraded medieval document images are a subset of the historical document images and may contain both graphical and textual content. Finally, we propose a degradation classification model in order to identify common distortion types in old document images. Essentially, existing no reference image quality assessment (NR-IQA) metrics are not designed to assess physical document distortions. In the first contribution, we propose the first dataset of degraded document images along with the human opinion scores for each document image. This dataset is introduced to evaluate the quality of historical document images. We also propose an objective NR-DIQA metric based on the statistics of the mean subtracted contrast normalized (MSCN) coefficients computed from segmented layers of each document image. The segmentation into four layers of foreground and background is done based on an analysis of the log-Gabor filters. This segmentation is based on the assumption that the sensitivity of the human visual system (HVS) is different at the locations of text and non-text. Experimental results show that the proposed metric has comparable or better performance than the state-of-the-art metrics, while it has a moderate complexity. Degradation identification and quality assessment can complement each other to provide information on both type and severity of degradations in document images. Therefore, we introduced, in the second contribution, a multi-distortion historical document image database that can be used for the research on quality assessment of degraded documents as well as degradation classification. The developed dataset contains historical document images which are classified into four categories based on their distortion types, namely, paper translucency, stain, readers’ annotations, and worn holes. An efficient NR-DIQA metric is then proposed based on three sets of spatial and frequency image features extracted from two layers of text and non-text. In addition, these features are used to estimate the probability of the four aforementioned physical distortions for the first time in the literature. Both proposed quality assessment and degradation classification models deliver a very promising performance. Finally, we develop in the third contribution a dataset and a quality assessment metric for degraded medieval document (DMD) images. This type of degraded images contains both textual and pictorial information. The introduced DMD dataset is the first dataset in its category that also provides human ratings. Also, we propose a new no-reference metric in order to evaluate the quality of DMD images in the developed dataset. The proposed metric is based on the extraction of several statistical features from three layers of text, non-text, and graphics. The segmentation is based on color saliency with assumption that pictorial parts are colorful. It also follows HVS that gives different weights to each layer. The experimental results validate the effectiveness of the proposed NR-DIQA strategy for DMD images

    Hyperspectral image analysis for questioned historical documents.

    Get PDF
    This thesis describes the application of spectroscopy and hyperspectral image processing to examine historical manuscripts and text. Major activities in palaeographic and manuscript studies include the recovery of illegible or deleted text, the minute analyses of scribal hands, the identification of inks and the segmentation and dating of text. This thesis describes how Hyperspectral Imaging (HSI), applied in a novel manner, can be used to perform quality text recovery, segmentation and dating of historical documents. The non-destructive optical imaging process of Spectroscopy is described in detail and how it can be used to assist historians and document experts in the exemption of aged manuscripts. This non-destructive optical method of analysis can distinguish subtle differences in the reflectance properties of the materials under study. Many historically significant documents from libraries such as the Royal Irish Academy and the Russell Library at the National University of Ireland, Maynooth, have been the selected for study using the hyperspectral imaging technique. Processing techniques have are described for the applications to the study of manuscripts in a poor state of conservation. The research provides a comprehensive overview of Hyperspectral Imaging (HSI) and associated statistical and analytical methods, and also an in-depth investigation of the practical implementation of such methods to aid document analysts. Specifically, we provide results from employing statistical analytical methods including principal component analysis (PCA), independent component analysis (ICA) and both supervised and automatic clustering methods to historically significant manuscripts and text VIII such as Leabhar na hUidhre, a 12th century Irish text which was subject to part-erasure and rewriting, a 16th Century pastedown cover, and a multi-ink example typical of that found in, for example, late medieval administrative texts such as Gttingen’s kundige bok. The purpose of which is to achieve an overall greater insight into the historical context of the document, which includes the recovery or enhancement of faded or illegible text or text lost through fading, staining, overwriting or other forms of erasure. In addition, we demonstrate prospect of distinguishing different ink-types, and furnishing us with details of the manuscript’s composition, all of which are refinements, which can be used to answer questions about date and provenance. This process marks a new departure for the study of manuscripts and may provide answer many long-standing questions posed by palaeographers and by scholars in a variety of disciplines. Furthermore, through text retrieval, it holds out the prospect of adding considerably to the existing corpus of texts and to providing very many new research opportunities for coming generations of scholars

    Adaptive Methods for Robust Document Image Understanding

    Get PDF
    A vast amount of digital document material is continuously being produced as part of major digitization efforts around the world. In this context, generic and efficient automatic solutions for document image understanding represent a stringent necessity. We propose a generic framework for document image understanding systems, usable for practically any document types available in digital form. Following the introduced workflow, we shift our attention to each of the following processing stages in turn: quality assurance, image enhancement, color reduction and binarization, skew and orientation detection, page segmentation and logical layout analysis. We review the state of the art in each area, identify current defficiencies, point out promising directions and give specific guidelines for future investigation. We address some of the identified issues by means of novel algorithmic solutions putting special focus on generality, computational efficiency and the exploitation of all available sources of information. More specifically, we introduce the following original methods: a fully automatic detection of color reference targets in digitized material, accurate foreground extraction from color historical documents, font enhancement for hot metal typesetted prints, a theoretically optimal solution for the document binarization problem from both computational complexity- and threshold selection point of view, a layout-independent skew and orientation detection, a robust and versatile page segmentation method, a semi-automatic front page detection algorithm and a complete framework for article segmentation in periodical publications. The proposed methods are experimentally evaluated on large datasets consisting of real-life heterogeneous document scans. The obtained results show that a document understanding system combining these modules is able to robustly process a wide variety of documents with good overall accuracy

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Aeronautical engineering, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 567 reports, articles and other documents introduced into the NASA scientific and technical information system in January 1984

    Framework for Automatic Identification of Paper Watermarks with Chain Codes

    Get PDF
    Title from PDF of title page viewed May 21, 2018Dissertation advisor: Reza DerakhshaniVitaIncludes bibliographical references (pages 220-235)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2017In this dissertation, I present a new framework for automated description, archiving, and identification of paper watermarks found in historical documents and manuscripts. The early manufacturers of paper have introduced the embedding of identifying marks and patterns as a sign of a distinct origin and perhaps as a signature of quality. Thousands of watermarks have been studied, classified, and archived. Most of the classification categories are based on image similarity and are searchable based on a set of defined contextual descriptors. The novel method presented here is for automatic classification, identification (matching) and retrieval of watermark images based on chain code descriptors (CC). The approach for generation of unique CC includes a novel image preprocessing method to provide a solution for rotation and scale invariant representation of watermarks. The unique codes are truly reversible, providing high ratio lossless compression, fast searching, and image matching. The development of a novel distance measure for CC comparison is also presented. Examples for the complete process are given using the recently acquired watermarks digitized with hyper-spectral imaging of Summa Theologica, the work of Antonino Pierozzi (1389 – 1459). The performance of the algorithm on large datasets is demonstrated using watermarks datasets from well-known library catalogue collections.Introduction -- Paper and paper watermarks -- Automatic identification of paper watermarks -- Rotation, Scale and translation invariant chain code -- Comparison of RST_Invariant chain code -- Automatic identification of watermarks with chain codes -- Watermark composite feature vector -- Summary -- Appendix A. Watermarks from the Bernstein Collection used in this study -- Appendix B. The original and transformed images of watermarks -- Appendix C. The transformed and scaled images of watermarks -- Appendix D. Example of chain cod

    Bleed-Through Removal from Degraded Documents Using a Color Decorrelation Method

    No full text

    Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Get PDF
    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added significant fidelity to the design of the configuration in this phase by performing a low speed wind tunnel test at our LTWT facility in Palmdale, by more complete modelling of propulsion effects in our sonic boom analysis, and by refining our configuration packaging and performance assessments. Working with General Electric, LM performed an assessment of the impact of inlet and nozzle effects on the sonic boom signature of the LM N+2 configurations. Our results indicate that inlet/exhaust streamtube boundary conditions are adequate for conceptual design studies, but realistic propulsion modeling at similar stream-tube conditions does have a small but measurable impact on the sonic boom signature. Previous supersonic transport studies have identified aeroelastic effects as one of the major challenges associated with the long, slender vehicles particularly common with shaped boom aircraft (Ref. 3). Under the Phase 2 effort, we have developed a detailed structural analysis model to evaluate the impact of flexibility and structural considerations on the feasibility of future quiet supersonic transports. We looked in particular at dynamic structural modes and flutter as a failure that must be avoided. We found that for our N+2 design in particular, adequate flutter margin existed. Our flutter margin is large enough to cover uncertainties like large increases in engine weight and the margin is relatively easy to increase with additional stiffening mass. The lack of major aeroelastic problems probably derives somewhat from an early design bias. While shaped boom aircraft require long length, they are not required to be thin. We intentionally developed our structural depths to avoid major flexibility problems. So at the end of Phase 2, we have validated that aeroelastic problems are not necessarily endemic to shaped boom designs. Experimental validation of sonic boom design and analysis techniques was the primary objective of the N+2 Supersonic Validations contract; and in this Phase, LM participated in four high speed wind tunnel tests. The first so-called Parametric Test in the Ames 9x7 tunnel did an exhaustive look at variation effects of the parameters: humidity, total pressure, sample time, spatial averaging distance and number of measurement locations, and more. From the results we learned to obtain data faster and more accurately, and made test condition tolerances easy to meet (eliminating earlier 60 percent wasted time when condition tolerances could not be held). The next two tests used different tunnels. The Ames 11 ft tunnel was used to test lower Mach numbers of 1.2 and 1.4. There were several difficulties using this tunnel for the first time for sonic boom including having to shift the measurement Mach numbers to 1.15 and 1.3 to avoid flow problems. It is believed that the 11 ft could be used successfully to measure sonic boom but there are likely to be a number of test condition restrictions. The Glenn 8x6 ft tunnel was used next and the tunnel has a number of desirable features for sonic boom measurement. While the Ames 9x7 can only test Mach 1.55 to 2.55 and the 11 ft can only test Mach 1.3 and lower, the Glenn 8x6 can test continuously from Mach 0.3 to 2.0. Unfortunately test measurement accuracy was compromised by a reference pressure drift. Post-test analysis revealed that the drift occurred when Mach number drifted slightly. Test measurements indicated that if Mach number drift is eliminated, results from the 8x6 would be more accurate, especially at longer distances, than results from the 9x7. The fourth test in the 9x7, called LM4, used everything we learned to comprehensively and accurately measure our new 1044-02 configuration with a full-carpet shaped signature design. Productivity was 8 times greater than our Phase 1 LM3 test. Measurement accuracy and repeatability was excellent out to 42 in. However, measurements at greater distances require the rail in the aft position and become substantially less accurate. Further signature processing or measurement improvements are needed for beyond near-field signature validation

    Textbook on Scar Management

    Get PDF
    This text book is open access under a CC BY 4.0 license. Written by a group of international experts in the field and the result of over ten years of collaboration, it allows students and readers to gain to gain a detailed understanding of scar and wound treatment – a topic still dispersed among various disciplines. The content is divided into three parts for easy reference. The first part focuses on the fundamentals of scar management, including assessment and evaluation procedures, classification, tools for accurate measurement of all scar-related elements (volume density, color, vascularization), descriptions of the different evaluation scales. It also features chapters on the best practices in electronic-file storage for clinical reevaluation and telemedicine procedures for safe remote evaluation. The second section offers a comprehensive review of treatment and evidence-based technologies, presenting a consensus of the various available guidelines (silicone, surgery, chemical injections, mechanical tools for scar stabilization, lasers). The third part evaluates the full range of emerging technologies offered to physicians as alternative or complementary solutions for wound healing (mechanical, chemical, anti-proliferation). Textbook on Scar Management will appeal to trainees, fellows, residents and physicians dealing with scar management in plastic surgery, dermatology, surgery and oncology, as well as to nurses and general practitioners ; Comprehensive reference covering the complete field of wounds and scar management: semiology, classifications and scoring Highly educational contents for trainees as well as professionals in plastic surgery, dermatology, surgery, oncology as well as nurses and general practitioners Fast access to information through key points, take home messages, highlights, and a wealth of clinical cases Book didactic contents enhanced by supplementary material and video
    corecore