7 research outputs found

    MT-EA4Cloud: A Methodology For testing and optimising energy-aware cloud systems

    Get PDF
    Currently, using conventional techniques for checking and optimising the energy consumption in cloud systems is unpractical, due to the massive computational resources required. An appropriate test suite focusing on the parts of the cloud to be tested must be efficiently synthesised and executed, while the correctness of the test results must be checked. Additionally, alternative cloud configurations that optimise the energetic consumption of the cloud must be generated and analysed accordingly, which is challenging. To solve these issues we present MT-EA4Cloud, a formal approach to check the correctness – from an energy-aware point of view – of cloud systems and optimise their energy consumption. To make the checking of energy consumption practical, MT-EA4Cloud combines metamorphic testing, evolutionary algorithms and simulation. Metamorphic testing allows to formally model the underlying cloud infrastructure in the form of metamorphic relations. We use metamorphic testing to alleviate both the reliable test set problem, generating appropriate test suites focused on the features reflected in the metamorphic relations, and the oracle problem, using the metamorphic relations to check the generated results automatically. MT-EA4Cloud uses evolutionary algorithms to efficiently guide the search for optimising the energetic consumption of cloud systems, which can be calculated using different cloud simulators

    MT-EA4Cloud: A Methodology For testing and optimising energy-aware cloud systems

    Full text link
    Currently, using conventional techniques for checking and optimising the energy consumption in cloud systems is unpractical, due to the massive computational resources required. An appropriate test suite focusing on the parts of the cloud to be tested must be efficiently synthesised and executed, while the correctness of the test results must be checked. Additionally, alternative cloud configurations that optimise the energetic consumption of the cloud must be generated and analysed accordingly, which is challenging. To solve these issues we present MT-EA4Cloud, a formal approach to check the correctness – from an energy-aware point of view – of cloud systems and optimise their energy consumption. To make the checking of energy consumption practical, MT-EA4Cloud combines metamorphic testing, evolutionary algorithms and simulation. Metamorphic testing allows to formally model the underlying cloud infrastructure in the form of metamorphic relations. We use metamorphic testing to alleviate both the reliable test set problem, generating appropriate test suites focused on the features reflected in the metamorphic relations, and the oracle problem, using the metamorphic relations to check the generated results automatically. MT-EA4Cloud uses evolutionary algorithms to efficiently guide the search for optimising the energetic consumption of cloud systems, which can be calculated using different cloud simulatorsThis work was supported by the Spanish MINECO/FEDER projects DArDOS, FAME and MASSIVE under Grants TIN2015-65845-C3-1-R, RTI2018-093608-B-C31 and RTI2018-095255- B-I00, and the Comunidad de Madrid project FORTE-CM under grant S2018/TCS-4314. The first author is also supported by the Universidad Complutense de Madrid Santander Universidades grant (CT17/17-CT18/17

    Incorporating standardised drift-tube ion mobility to enhance non-targeted assessment of the wine metabolome (LC×IM-MS)

    Get PDF
    Liquid chromatography with drift-tube ion mobility spectrometry-mass spectrometry (LCxIM-MS) is emerging as a powerful addition to existing LC-MS workflows for addressing a diverse range of metabolomics-related questions [1,2]. Importantly, excellent precision under repeatability and reproducibility conditions of drift-tube IM separations [3] supports the development of non-targeted approaches for complex metabolome assessment such as wine characterisation [4]. In this work, fundamentals of this new analytical metabolomics approach are introduced and application to the analysis of 90 authentic red and white wine samples originating from Macedonia is presented. Following measurements, intersample alignment of metabolites using non-targeted extraction and three-dimensional alignment of molecular features (retention time, collision cross section, and high-resolution mass spectra) provides confidence for metabolite identity confirmation. Applying a fingerprinting metabolomics workflow allows statistical assessment of the influence of geographic region, variety, and age. This approach is a state-of-the-art tool to assess wine chemodiversity and is particularly beneficial for the discovery of wine biomarkers and establishing product authenticity based on development of fingerprint libraries
    corecore