14,015 research outputs found

    Fault tolerant model predictive control of open channels

    Get PDF
    Automated control of water systems (irrigation canals, navigation canals, rivers etc.) relies on the measured data. The control action is calculated, in case of feedback controller, directly from the on-line measured data. If the measured data is corrupted, the calculated control action will have a different effect than it is desired. Therefore, it is crucial that the feedback controller receives good quality measurement data. On-line fault detection techniques can be applied in order to detect the faulty data and correct it. After the detection and correction of the sensor data, the controller should be able to still maintain the set point of the system. In this paper this principle using the sensor fault masking is applied to model predictive control of open channels. A case study of a reach of the northwest of the inland navigation network of France is presented. Model predictive control and water level sensor masking is applied.Peer ReviewedPostprint (published version

    A unified framework for solving a general class of conditional and robust set-membership estimation problems

    Full text link
    In this paper we present a unified framework for solving a general class of problems arising in the context of set-membership estimation/identification theory. More precisely, the paper aims at providing an original approach for the computation of optimal conditional and robust projection estimates in a nonlinear estimation setting where the operator relating the data and the parameter to be estimated is assumed to be a generic multivariate polynomial function and the uncertainties affecting the data are assumed to belong to semialgebraic sets. By noticing that the computation of both the conditional and the robust projection optimal estimators requires the solution to min-max optimization problems that share the same structure, we propose a unified two-stage approach based on semidefinite-relaxation techniques for solving such estimation problems. The key idea of the proposed procedure is to recognize that the optimal functional of the inner optimization problems can be approximated to any desired precision by a multivariate polynomial function by suitably exploiting recently proposed results in the field of parametric optimization. Two simulation examples are reported to show the effectiveness of the proposed approach.Comment: Accpeted for publication in the IEEE Transactions on Automatic Control (2014

    Active Sampling-based Binary Verification of Dynamical Systems

    Full text link
    Nonlinear, adaptive, or otherwise complex control techniques are increasingly relied upon to ensure the safety of systems operating in uncertain environments. However, the nonlinearity of the resulting closed-loop system complicates verification that the system does in fact satisfy those requirements at all possible operating conditions. While analytical proof-based techniques and finite abstractions can be used to provably verify the closed-loop system's response at different operating conditions, they often produce conservative approximations due to restrictive assumptions and are difficult to construct in many applications. In contrast, popular statistical verification techniques relax the restrictions and instead rely upon simulations to construct statistical or probabilistic guarantees. This work presents a data-driven statistical verification procedure that instead constructs statistical learning models from simulated training data to separate the set of possible perturbations into "safe" and "unsafe" subsets. Binary evaluations of closed-loop system requirement satisfaction at various realizations of the uncertainties are obtained through temporal logic robustness metrics, which are then used to construct predictive models of requirement satisfaction over the full set of possible uncertainties. As the accuracy of these predictive statistical models is inherently coupled to the quality of the training data, an active learning algorithm selects additional sample points in order to maximize the expected change in the data-driven model and thus, indirectly, minimize the prediction error. Various case studies demonstrate the closed-loop verification procedure and highlight improvements in prediction error over both existing analytical and statistical verification techniques.Comment: 23 page

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - II. Implementation Issues

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. This second part examines the practical side of the sufficient conditions for feasibility and optimality (SCFO) proposed in the first and focuses on how they may be enforced in real application, where much of the knowledge required for the conceptual SCFO is unavailable. Methods for improving convergence speed are also considered.Comment: 56 pages, 15 figure

    Study on adaptive control of nonlinear dynamical systems based on quansi-ARX models

    Get PDF
    制度:新 ; 報告番号:甲3441号 ; 学位の種類:博士(工学) ; 授与年月日:15-Sep-11 ; 早大学位記番号:新576

    Set-membership LPV model identification of vehicle lateral dynamics

    Get PDF
    Set-membership identification of a Linear Parameter Varying (LPV) model describing the vehicle lateral dynamics is addressed in the paper. The model structure, chosen as much as possible on the ground of physical insights into the vehicle lateral behavior, consists of two single-input single-output {LPV} models relating the steering angle to the yaw rate and to the sideslip angle. A set of experimental data obtained by performing a large number of maneuvers is used to identify the vehicle lateral dynamics model. Prior information on the error bounds on the output and the time-varying parameter measurements are taken into account. Comparison with other vehicle lateral dynamics models is discussed

    Fault tolerant model predictive control of open channels

    Get PDF
    Trabajo presentado a la USCID Conference on Planning, Operation and Automation of Irrigation Delivery Systems celebrada en Phoenix, Arizona (US) del 2 al 5 de diciembre de 2014.Automated control of water systems (irrigation canals, navigation canals, rivers etc.) relies on the measured data. The control action is calculated, in case of feedback controller, directly from the on-line measured data. If the measured data is corrupted, the calculated control action will have a different effect than it is desired. Therefore, it is crucial that the feedback controller receives good quality measurement data. On-line fault detection techniques can be applied in order to detect the faulty data and correct it. After the detection and correction of the sensor data, the controller should be able to still maintain the set point of the system. In this paper this principle using the sensor fault masking is applied to model predictive control of open channels. A case study of a reach of the northwest of the inland navigation network of France is presented. Model predictive control and water level sensor masking is applied.Peer Reviewe
    corecore