2,304 research outputs found

    Exploiting non-constant safe memory in resilient algorithms and data structures

    Get PDF
    We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size SS, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ\delta and α\alpha denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with αδ\alpha \leq \delta. We propose a resilient algorithm for sorting nn entries which requires O(nlogn+α(δ/S+logS))O\left(n\log n+\alpha (\delta/S + \log S)\right) time and uses Θ(S)\Theta(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ)O\left(n\log n+ \alpha\delta\right) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S)\Theta(S) safe memory words and Θ(n)\Theta(n) faulty memory words for storing nn keys, and requires O(logn+δ/S)O\left(\log n + \delta/S\right) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ)O\left(\log n + \delta\right) amortized time required by the state of the art.Comment: To appear in Theoretical Computer Science, 201

    Memory-Adjustable Navigation Piles with Applications to Sorting and Convex Hulls

    Get PDF
    We consider space-bounded computations on a random-access machine (RAM) where the input is given on a read-only random-access medium, the output is to be produced to a write-only sequential-access medium, and the available workspace allows random reads and writes but is of limited capacity. The length of the input is NN elements, the length of the output is limited by the computation, and the capacity of the workspace is O(S)O(S) bits for some predetermined parameter SS. We present a state-of-the-art priority queue---called an adjustable navigation pile---for this restricted RAM model. Under some reasonable assumptions, our priority queue supports minimum\mathit{minimum} and insert\mathit{insert} in O(1)O(1) worst-case time and extract\mathit{extract} in O(N/S+lgS)O(N/S + \lg{} S) worst-case time for any SlgNS \geq \lg{} N. We show how to use this data structure to sort NN elements and to compute the convex hull of NN points in the two-dimensional Euclidean space in O(N2/S+NlgS)O(N^2/S + N \lg{} S) worst-case time for any SlgNS \geq \lg{} N. Following a known lower bound for the space-time product of any branching program for finding unique elements, both our sorting and convex-hull algorithms are optimal. The adjustable navigation pile has turned out to be useful when designing other space-efficient algorithms, and we expect that it will find its way to yet other applications.Comment: 21 page

    Smooth heaps and a dual view of self-adjusting data structures

    Full text link
    We present a new connection between self-adjusting binary search trees (BSTs) and heaps, two fundamental, extensively studied, and practically relevant families of data structures. Roughly speaking, we map an arbitrary heap algorithm within a natural model, to a corresponding BST algorithm with the same cost on a dual sequence of operations (i.e. the same sequence with the roles of time and key-space switched). This is the first general transformation between the two families of data structures. There is a rich theory of dynamic optimality for BSTs (i.e. the theory of competitiveness between BST algorithms). The lack of an analogous theory for heaps has been noted in the literature. Through our connection, we transfer all instance-specific lower bounds known for BSTs to a general model of heaps, initiating a theory of dynamic optimality for heaps. On the algorithmic side, we obtain a new, simple and efficient heap algorithm, which we call the smooth heap. We show the smooth heap to be the heap-counterpart of Greedy, the BST algorithm with the strongest proven and conjectured properties from the literature, widely believed to be instance-optimal. Assuming the optimality of Greedy, the smooth heap is also optimal within our model of heap algorithms. As corollaries of results known for Greedy, we obtain instance-specific upper bounds for the smooth heap, with applications in adaptive sorting. Intriguingly, the smooth heap, although derived from a non-practical BST algorithm, is simple and easy to implement (e.g. it stores no auxiliary data besides the keys and tree pointers). It can be seen as a variation on the popular pairing heap data structure, extending it with a "power-of-two-choices" type of heuristic.Comment: Presented at STOC 2018, light revision, additional figure

    On the Importance of Registers for Computability

    Full text link
    All consensus hierarchies in the literature assume that we have, in addition to copies of a given object, an unbounded number of registers. But why do we really need these registers? This paper considers what would happen if one attempts to solve consensus using various objects but without any registers. We show that under a reasonable assumption, objects like queues and stacks cannot emulate the missing registers. We also show that, perhaps surprisingly, initialization, shown to have no computational consequences when registers are readily available, is crucial in determining the synchronization power of objects when no registers are allowed. Finally, we show that without registers, the number of available objects affects the level of consensus that can be solved. Our work thus raises the question of whether consensus hierarchies which assume an unbounded number of registers truly capture synchronization power, and begins a line of research aimed at better understanding the interaction between read-write memory and the powerful synchronization operations available on modern architectures.Comment: 12 pages, 0 figure

    Lower Bounds for Oblivious Near-Neighbor Search

    Get PDF
    We prove an Ω(dlgn/(lglgn)2)\Omega(d \lg n/ (\lg\lg n)^2) lower bound on the dynamic cell-probe complexity of statistically oblivious\mathit{oblivious} approximate-near-neighbor search (ANN\mathsf{ANN}) over the dd-dimensional Hamming cube. For the natural setting of d=Θ(logn)d = \Theta(\log n), our result implies an Ω~(lg2n)\tilde{\Omega}(\lg^2 n) lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for ANN\mathsf{ANN}. This is the first super-logarithmic unconditional\mathit{unconditional} lower bound for ANN\mathsf{ANN} against general (non black-box) data structures. We also show that any oblivious static\mathit{static} data structure for decomposable search problems (like ANN\mathsf{ANN}) can be obliviously dynamized with O(logn)O(\log n) overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).Comment: 28 page

    Priority queues and sorting for read-only data

    Get PDF
    Abstract. We revisit the random-access-machine model in which the input is given on a read-only random-access media, the output is to be produced to a write-only sequential-access media, and in addition there is a limited random-access workspace. The length of the input is N elements, the length of the output is limited by the computation itself, and the capacity of the workspace is O(S + w) bits, where S is a parameter specified by the user and w is the number of bits per machine word. We present a state-of-the-art priority queue-called an adjustable navigation pile-for this model. Under some reasonable assumptions, our priority queue supports minimum and insert in O(1) worst-case time and extract in O(N/S +lg S) worst-case time, where lg N ≤ S ≤ N/ lg N . We also show how to use this data structure to simplify the existing optimal O(N 2 /S + N lg S)-time sorting algorithm for this model

    Data Structures Lecture Notes (Student Version)

    Get PDF
    Lecture notes for a data-structures course in computer science with examples in Java. Students in this course should have already taken an intro-programming course in an object-oriented language and have a basic grasp of Java. These are not designed to accompany any specific textbook

    Parallel Working-Set Search Structures

    Full text link
    In this paper we present two versions of a parallel working-set map on p processors that supports searches, insertions and deletions. In both versions, the total work of all operations when the map has size at least p is bounded by the working-set bound, i.e., the cost of an item depends on how recently it was accessed (for some linearization): accessing an item in the map with recency r takes O(1+log r) work. In the simpler version each map operation has O((log p)^2+log n) span (where n is the maximum size of the map). In the pipelined version each map operation on an item with recency r has O((log p)^2+log r) span. (Operations in parallel may have overlapping span; span is additive only for operations in sequence.) Both data structures are designed to be used by a dynamic multithreading parallel program that at each step executes a unit-time instruction or makes a data structure call. To achieve the stated bounds, the pipelined data structure requires a weak-priority scheduler, which supports a limited form of 2-level prioritization. At the end we explain how the results translate to practical implementations using work-stealing schedulers. To the best of our knowledge, this is the first parallel implementation of a self-adjusting search structure where the cost of an operation adapts to the access sequence. A corollary of the working-set bound is that it achieves work static optimality: the total work is bounded by the access costs in an optimal static search tree.Comment: Authors' version of a paper accepted to SPAA 201
    corecore