325 research outputs found

    Curve network interpolation by C1C^1 quadratic B-spline surfaces

    Full text link
    In this paper we investigate the problem of interpolating a B-spline curve network, in order to create a surface satisfying such a constraint and defined by blending functions spanning the space of bivariate C1C^1 quadratic splines on criss-cross triangulations. We prove the existence and uniqueness of the surface, providing a constructive algorithm for its generation. We also present numerical and graphical results and comparisons with other methods.Comment: With respect to the previous version, this version of the paper is improved. The results have been reorganized and it is more general since it deals with non uniform knot partitions. Accepted for publication in Computer Aided Geometric Design, October 201

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    An isogeometric analysis for elliptic homogenization problems

    Full text link
    A novel and efficient approach which is based on the framework of isogeometric analysis for elliptic homogenization problems is proposed. These problems possess highly oscillating coefficients leading to extremely high computational expenses while using traditional finite element methods. The isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in this paper is regarded as an alternative approach to the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) which is currently an effective framework to solve these problems. The method utilizes non-uniform rational B-splines (NURBS) in both macro and micro levels instead of standard Lagrange basis. Beside the ability to describe exactly the geometry, it tremendously facilitates high-order macroscopic/microscopic discretizations thanks to the flexibility of refinement and degree elevation with an arbitrary continuity level provided by NURBS basis functions. A priori error estimates of the discretization error coming from macro and micro meshes and optimal micro refinement strategies for macro/micro NURBS basis functions of arbitrary orders are derived. Numerical results show the excellent performance of the proposed method

    A subdivision-based implementation of non-uniform local refinement with THB-splines

    Get PDF
    Paper accepted for 15th IMA International Conference on Mathematics on Surfaces, 2017. Abstract: Local refinement of spline basis functions is an important process for spline approximation and local feature modelling in computer aided design (CAD). This paper develops an efficient local refinement method for non-uniform and general degree THB-splines(Truncated hierarchical B-splines). A non-uniform subdivision algorithm is improved to efficiently subdivide a single non-uniform B-spline basis function. The subdivision scheme is then applied to locally hierarchically refine non-uniform B-spline basis functions. The refined basis functions are non-uniform and satisfy the properties of linear independence, partition of unity and are locally supported. The refined basis functions are suitable for spline approximation and numerical analysis. The implementation makes it possible for hierarchical approximation to use the same non-uniform B-spline basis functions as existing modelling tools have used. The improved subdivision algorithm is faster than classic knot insertion. The non-uniform THB-spline approximation is shown to be more accurate than uniform low degree hierarchical local refinement when applied to two classical approximation problems

    On spline quasi-interpolation through dimensions

    Get PDF

    An integrated design-analysis framework for three dimensional composite panels

    Get PDF
    We present an integrated design-analysis framework for three dimensional composite panels. The main components of the proposed framework consist of (1) a new curve/surface offset algorithm and (2) the isogeometric concept recently emerged in the computational mechanics community. Using the presented approach, finite element analysis of composite panels can be performed with the only input is the geometry representation of the composite surface. In this paper, non-uniform rational B-splines (NURBS) are used to represent the panel surfaces. A stress analysis of curved composite panel with stiffeners is provided to demonstrate the proposed framework

    Dynamic Multivariate Simplex Splines For Volume Representation And Modeling

    Get PDF
    Volume representation and modeling of heterogeneous objects acquired from real world are very challenging research tasks and playing fundamental roles in many potential applications, e.g., volume reconstruction, volume simulation and volume registration. In order to accurately and efficiently represent and model the real-world objects, this dissertation proposes an integrated computational framework based on dynamic multivariate simplex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous objects. The framework can not only reconstruct with high accuracy geometric, material, and other quantities associated with heterogeneous real-world models, but also simulate the complicated dynamics precisely by tightly coupling these physical properties into simulation. The integration of geometric modeling and material modeling is the key to the success of representation and modeling of real-world objects. The proposed framework has been successfully applied to multiple research areas, such as volume reconstruction and visualization, nonrigid volume registration, and physically based modeling and simulation

    Kirchhoff-Love shell representation and analysis using triangle configuration B-splines

    Full text link
    This paper presents the application of triangle configuration B-splines (TCB-splines) for representing and analyzing the Kirchhoff-Love shell in the context of isogeometric analysis (IGA). The Kirchhoff-Love shell formulation requires global C1C^1-continuous basis functions. The nonuniform rational B-spline (NURBS)-based IGA has been extensively used for developing Kirchhoff-Love shell elements. However, shells with complex geometries inevitably need multiple patches and trimming techniques, where stitching patches with high continuity is a challenge. On the other hand, due to their unstructured nature, TCB-splines can accommodate general polygonal domains, have local refinement, and are flexible to model complex geometries with C1C^1 continuity, which naturally fit into the Kirchhoff-Love shell formulation with complex geometries. Therefore, we propose to use TCB-splines as basis functions for geometric representation and solution approximation. We apply our method to both linear and nonlinear benchmark shell problems, where the accuracy and robustness are validated. The applicability of the proposed approach to shell analysis is further exemplified by performing geometrically nonlinear Kirchhoff-Love shell simulations of a pipe junction and a front bumper represented by a single patch of TCB-splines
    • …
    corecore