65 research outputs found

    Toward Fault-Tolerant Applications on Reconfigurable Systems-on-Chip

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    Radiation-induced Effects on DMA Data Transfer in Reconfigurable Devices

    Get PDF
    As the adoption of SRAM-based FPGAs and Reconfigurable SoCs for High-Performance Computing increased in the last years, the use of Direct Memory Access for data transfer becomes a key feature of many reconfigurable applications even in the space industry. For such kinds of applications, radiation-induced effects are a serious issue that mines the correctness and success of mission-critical tasks. In this paper, we evaluate the effects of proton-induced errors on a DMA-based application implemented on a Xilinx Zynq-7020 FPGA in order to quantify the robustness of this module in a typical hardware-accelerated configuration. The obtained results confirm the high criticality of the DMA module on programmable logic. Moreover, the Multiple Bits Upsets effect has been evaluated. The most recurring patterns have been reported in order to provide further tools to better characterize the behavior of these systems under future fault injection campaigns, as demonstrated in the experimental results

    Fault-tolerant fpga for mission-critical applications.

    Get PDF
    One of the devices that play a great role in electronic circuits design, specifically safety-critical design applications, is Field programmable Gate Arrays (FPGAs). This is because of its high performance, re-configurability and low development cost. FPGAs are used in many applications such as data processing, networks, automotive, space and industrial applications. Negative impacts on the reliability of such applications result from moving to smaller feature sizes in the latest FPGA architectures. This increases the need for fault-tolerant techniques to improve reliability and extend system lifetime of FPGA-based applications. In this thesis, two fault-tolerant techniques for FPGA-based applications are proposed with a built-in fault detection region. A low cost fault detection scheme is proposed for detecting faults using the fault detection region used in both schemes. The fault detection scheme primarily detects open faults in the programmable interconnect resources in the FPGAs. In addition, Stuck-At faults and Single Event Upsets (SEUs) fault can be detected. For fault recovery, each scheme has its own fault recovery approach. The first approach uses a spare module and a 2-to-1 multiplexer to recover from any fault detected. On the other hand, the second approach recovers from any fault detected using the property of Partial Reconfiguration (PR) in the FPGAs. It relies on identifying a Partially Reconfigurable block (P_b) in the FPGA that is used in the recovery process after the first faulty module is identified in the system. This technique uses only one location to recover from faults in any of the FPGA’s modules and the FPGA interconnects. Simulation results show that both techniques can detect and recover from open faults. In addition, Stuck-At faults and Single Event Upsets (SEUs) fault can also be detected. Finally, both techniques require low area overhead

    Cross-layer Soft Error Analysis and Mitigation at Nanoscale Technologies

    Get PDF
    This thesis addresses the challenge of soft error modeling and mitigation in nansoscale technology nodes and pushes the state-of-the-art forward by proposing novel modeling, analyze and mitigation techniques. The proposed soft error sensitivity analysis platform accurately models both error generation and propagation starting from a technology dependent device level simulations all the way to workload dependent application level analysis

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Novel fault tolerant Multi-Bit Upset (MBU) Error-Detection and Correction (EDAC) architecture

    Get PDF
    Desde el punto de vista de seguridad, la certificación aeronáutica de aplicaciones críticas de vuelo requiere diferentes técnicas que son usadas para prevenir fallos en los equipos electrónicos. Los fallos de tipo hardware debido a la radiación solar que existe a las alturas standard de vuelo, como SEU (Single Event Upset) y MCU (Multiple Bit Upset), provocan un cambio de estado de los bits que soportan la información almacenada en memoria. Estos fallos se producen, por ejemplo, en la memoria de configuración de una FPGA, que es donde se definen todas las funcionalidades. Las técnicas de protección requieren normalmente de redundancias que incrementan el coste, número de componentes, tamaño de la memoria y peso. En la fase de desarrollo de aplicaciones críticas de vuelo, generalmente se utilizan una serie de estándares o recomendaciones de diseño como ABD100, RTCA DO-160, IEC62395, etc, y diferentes técnicas de protección para evitar fallos del tipo SEU o MCU. Estas técnicas están basadas en procesos tecnológicos específicos como memorias robustas, codificaciones para detección y corrección de errores (EDAC), redundancias software, redundancia modular triple (TMR) o soluciones a nivel sistema. Esta tesis está enfocada a minimizar e incluso suprimir los efectos de los SEUs y MCUs que particularmente ocurren en la electrónica de avión como consecuencia de la exposición a radiación de partículas no cargadas (como son los neutrones) que se encuentra potenciada a las típicas alturas de vuelo. La criticidad en vuelo que tienen determinados sistemas obligan a que dichos sistemas sean tolerantes a fallos, es decir, que garanticen un correcto funcionamiento aún cuando se produzca un fallo en ellos. Es por ello que soluciones como las presentadas en esta tesis tienen interés en el sector industrial. La Tesis incluye una descripción inicial de la física de la radiación incidente sobre aeronaves, y el análisis de sus efectos en los componentes electrónicos aeronaúticos basados en semiconductor, que desembocan en la generación de SEUs y MCUs. Este análisis permite dimensionar adecuadamente y optimizar los procedimientos de corrección que se propongan posteriormente. La Tesis propone un sistema de corrección de fallos SEUs y MCUs que permita cumplir la condición de Sistema Tolerante a Fallos, a la vez que minimiza los niveles de redundancia y de complejidad de los códigos de corrección. El nivel de redundancia es minimizado con la introducción del concepto propuesto HSB (Hardwired Seed Bits), en la que se reduce la información esencial a unos pocos bits semilla, neutros frente a radiación. Los códigos de corrección requeridos se reducen a la corrección de un único error, gracias al uso del concepto de Distancia Virtual entre Bits, a partir del cual será posible corregir múltiples errores simultáneos (MCUs) a partir de códigos simples de corrección. Un ejemplo de aplicación de la Tesis es la implementación de una Protección Tolerante a Fallos sobre la memoria SRAM de una FPGA. Esto significa que queda protegida no sólo la información contenida en la memoria sino que también queda auto-protegida la función de protección misma almacenada en la propia SRAM. De esta forma, el sistema es capaz de auto-regenerarse ante un SEU o incluso un MCU, independientemente de la zona de la SRAM sobre la que impacte la radiación. Adicionalmente, esto se consigue con códigos simples tales como corrección por bit de paridad y Hamming, minimizando la dedicación de recursos de computación hacia tareas de supervisión del sistema.For airborne safety critical applications certification, different techniques are implemented to prevent failures in electronic equipments. The HW failures at flying heights of aircrafts related to solar radiation such as SEU (Single-Event-Upset) and MCU (Multiple Bit Upset), causes bits alterations that corrupt the information at memories. These HW failures cause errors, for example, in the Configuration-Code of an FPGA that defines the functionalities. The protection techniques require classically redundant functionalities that increases the cost, components, memory space and weight. During the development phase for airborne safety critical applications, different aerospace standards are generally recommended as ABD100, RTCA-DO160, IEC62395, etc, and different techniques are classically used to avoid failures such as SEU or MCU. These techniques are based on specific technology processes, Hardened memories, error detection and correction codes (EDAC), SW redundancy, Triple Modular Redundancy (TMR) or System level solutions. This Thesis is focussed to minimize, and even to remove, the effects of SEUs and MCUs, that particularly occurs in the airborne electronics as a consequence of its exposition to solar radiation of non-charged particles (for example the neutrons). These non-charged particles are even powered at flying altitudes due to aircraft volume. The safety categorization of different equipments/functionalities requires a design based on fault-tolerant approach that means, the system will continue its normal operation even if a failure occurs. The solution proposed in this Thesis is relevant for the industrial sector because of its Fault-tolerant capability. Thesis includes an initial description for the physics of the solar radiation that affects into aircrafts, and also the analyses of their effects into the airborne electronics based on semiconductor components that create the SEUs and MCUs. This detailed analysis allows the correct sizing and also the optimization of the procedures used to correct the errors. This Thesis proposes a system that corrects the SEUs and MCUs allowing the fulfilment of the Fault-Tolerant requirement, reducing the redundancy resources and also the complexity of the correction codes. The redundancy resources are minimized thanks to the introduction of the concept of HSB (Hardwired Seed Bits), in which the essential information is reduced to a few seed bits, neutral to radiation. The correction codes required are reduced to the correction of one error thanks to the use of the concept of interleaving distance between adjacent bits, this allows the simultaneous multiple error correction with simple single error correcting codes. An example of the application of this Thesis is the implementation of the Fault-tolerant architecture of an SRAM-based FPGA. That means that the information saved in the memory is protected but also the correction functionality is auto protected as well, also saved into SRAM memory. In this way, the system is able to self-regenerate the information lost in case of SEUs or MCUs. This is independent of the SRAM area affected by the radiation. Furthermore, this performance is achieved by means simple error correcting codes, as parity bits or Hamming, that minimize the use of computational resources to this supervision tasks for system.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Luis Alfonso Entrena Arrontes.- Secretario: Pedro Reviriego Vasallo.- Vocal: Mª Luisa López Vallej

    Hardware, Software and Data Analysis Techniques for SRAM-Based Field Programmable Gate Array Circuits

    Get PDF
    This work presents a built, tested, and demonstrated test structure that is low-cost, flexible, and re-usable for robust radiation experimentation, primarily to investigate memory, in this case SRAMs and SRAM-based FPGAs. The space environment can induce many kinds of failures due to radiation effects. These failures result in a loss of money, time, intelligence, and information. In order to evaluate technologies for potential failures, a detailed test methodology and associated structure are required. In this solution, an FPGA board was used as the controller platform, with multiple VHDL circuit controllers, data collection and reporting modules. The structure was demonstrated by programming an SRAM-based FPGA board as the device under test (DUT) with various types of adders, counters and RAM modules. The controllers, hardware, and data collection operations were tested and validated using gamma radiation from a Co-60 source at the Ohio State University Nuclear Reactor to irradiate the DUT. The test structure is easily modified to allow for a broad range of experiments on the same DUT. In addition, this structure is easily adaptable for other memory types, such as DRAM, FlashRam, and MRAM. These additions will be discussed further in this document. The system fits in a backpack and costs less than $1000

    An Adaptive Modular Redundancy Technique to Self-regulate Availability, Area, and Energy Consumption in Mission-critical Applications

    Get PDF
    As reconfigurable devices\u27 capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing environments that require high degree of adaptation. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The software layer supervises the organic activities within the FPGA and extends the self-healing capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage the benefits of dynamic Partial Reconfiguration (PR). A SMART prototype is evaluated using a Sobel edge detection application. This prototype is shown to provide sustainability for stressful occurrences of transient and permanent fault injection procedures while still reducing energy consumption and area requirements. An Organic Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable hardware. A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to compare SMART\u27s availability to industry-standard Triple Modular Technique (TMR) techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired from publically available sources, the results indicate that availability is significantly enhanced by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh environments, SMART is shown to improve system availability from 36.02% with lengthy repair techniques to 98.84% with fast ones. This value increases to five nines (99.9998%) under relatively more favorable conditions. Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is the recommended technique, with power savings ranging from 22% to 29%, and area savings ranging from 17% to 24%, while still maintaining the same level of availability
    • …
    corecore