104 research outputs found

    Forecasting bitcoin's volatility: Exploring the potential of deep-learning

    Get PDF
    The importance of using the right statistical, mathematical and computational tools can highly influence the decision-making process. With the recent computational progress, Deep Learning methodologies based on Artificial Intelligence seem to be pointed out as a promising tool to study financial time series, characterised by out-of-the-ordinary patterns. Cryptocurrencies are a new asset class with several specially interesting characteristics that still lack deep study and differ from the traditional time series. Bitcoin in particular is characterised by extraordinary high volatility, high number of structural breaks and other identified characteristics that might further difficult the study and forecasting of the time series using classical models. The goal of this study is to critically compare the forecasting properties of classic methodologies (ARCH and GARCH) with Deep Learning Techniques (with MLP, RNN and LSTM architectures) when forecasting Bitcoinโ€™s Volatility. The empirical study focuses on the forecasting of Bitcoinโ€™s Volatility using such models and comparing its forecasting quality using MAE and MAPE for one, three- and seven-dayโ€™s forecasting horizons. The Deep learning methodologies show advantages in terms of forecasting quality (when we take in consideration the MAPE) but also require huge computational costs. Diebold-Mariano tests were also performed to compare the forecasts concluding the superiority of Deep Learning Methodologies.A importรขncia de usar as ferramentas estatรญsticas, matemรกticas e computacionais certas pode certamente influenciar o processo de decisรฃo. Com os recentes avanรงos computacionais, as metodologias Deep-Learning, baseadas em Inteligรชncia Artificial apontam para uma ferramenta promissora para o estudo de sรฉries temporais de dados financeiros, caracterizadas por padrรตes que sรฃo fora do normal. As criptomoedas sรฃo uma nova classe de ativos que sรฃo caracterizados por alta volatilidade, elevado nรบmero de quebras de estrutura e outras caracterรญsticas que podem dificultar o estudo e previsรฃo por parte de modelos clรกssicos. O objetivo deste trabalho รฉ analisar de forma crรญtica as capacidades de previsรฃo das metodologias clรกssicas (ARCH e GARCH) comparativamente a metodologias de Deep-Learning (nomeadamente arquiteturas de redes neuronais: MLP, RNN e LSTM) para a previsรฃo da volatilidade da bitcoin. O estudo empรญrico deste trabalho foca-se na previsรฃo da volatilidade da bitcoin com os modelos supramencionados e comparar a sua qualidade preditiva usando as medidas de erro MAE e MAPE para horizontes de previsรฃo de um, trรชs e sete dias. As metodologias de Deep-Learning apresentam algumas vantagens no que respeita ร  qualidade de previsรฃo (pela anรกlise da mรฉtrica de erro MAPE) mas apresentam um custo computacional superior. Tambรฉm foram realizados Testes de Diebold-Mariano para comparar as previsรตes, concluindo-se a superioridade das metodologias de Deep-Learning

    ๋ธ”๋ก์ฒด์ธ, ๊ฐ€์ƒํ™”ํ, ํŒŒ์ƒ์ƒํ’ˆ ์‹œ์žฅ์„ ์œ„ํ•œ ์˜ˆ์ธก ๋ชจํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2018. 2. ์ด์žฌ์šฑ.This dissertation aims to conduct the empirical analysis for the financial derivative and cryptocurrency market and to develop analytical techniques based on machine learning models suitable for prediction and estimation of each field. In the financial derivative market, a Markov chain Monte Carlo (MCMC) methods employ the candidate probability distribution nearest to the target probability distribution to acquire sample distributed from the posterior density. Choice of the candidate probability distribution affects the practical convergence speed of the MCMC methodology and the fitness of the sample. In this dissertation, we propose a MCMC framework possible to samples from the candidate distribution nearest to the target probability density without the specification of the candidate distribution. We confirm that the jump diffusion models and Bayesian neural networks have the best performance in estimating and predicting given the data of the recent day for the model estimation given S&P index options in 2012. Especially, the jump diffusion model has a very high performance in terms of domain adaptation between the American option and the European option. This difference is reflected in the fact that the jump diffusion model is based on the common asset of the American option and the European option. Based on this empirical precedent study, we proposed a machine learning model called generative Bayesian neural network (GBNN) to overcome the disadvantages of the machine learning model. GBNN maximizes posterior probability through the GBNN obtains prior information from the GBNN data learned up to the previous day, and learns likelihood probability from actual trading data of learning day. We identify that the GBNN model outperform other benchmark models in terms of model prediction. Bitcoin is a successful cryptocurrency, and it has been extensively studied in fields of economics and computer science. In this dissertation, we analyze the time series of Bitcoin price with a BNN using Blockchain information in addition to macroeconomic variables. We conduct the empirical study that compares the Bayesian neural network with other linear and non-linear benchmark models on modeling and predicting the Bitcoin process. Our empirical studies show that BNN performs well in predicting Bitcoin price time series and explaining the high volatility of the Bitcoin price in Aug. 2017. In addition, we suggested the enhanced GRU model for correlation analysis between cryptocurrency markets. Assuming that the gate value obtained from the GRU model is the parameter of the VAR model, it makes possible to visualize the correlation between various alternative currencies in the cryptocurrency market. As a result, it is confirmed that there is a very significant correlation between the currencies separated from the existing currencies and the existing currencies.Chapter 1 Introduction 21 1.1 Financial derivative market analysis 21 1.2 Cryptocurrency market analysis 24 1.3 Aims of the Dissertation 26 1.4 Outline of the Dissertation 28 Chapter 2 Literature Review 29 2.1 Review of Financial Econometric Models 29 2.1.1 Time series models 29 2.1.2 Option pricing methods 34 2.2 Review of Statistical Machine Learning Models 39 2.2.1 Articial neural networks 39 2.2.2 Bayesian neural networks 39 2.2.3 Support vector regression 43 2.2.4 Gaussian process 45 Chapter 3 Predictive Models for the Derivatives Market 47 3.1 Chapter Overview 47 3.2 A Generative Model Sampler for Inference in State Space Model 51 3.2.1 Backgrounds 51 3.2.2 Proposed methods: generative model sampler 56 3.3 Machine Learning versus Econometric Models in Predictability of Financial Options Markets 59 3.3.1 Data description and experimental design 59 3.3.2 Estimation and prediction performance 62 3.3.3 Robustness and Domain Adaptation Performance of the Models 66 3.4 A Generative Bayesian Neural Networks Model for Risk-Neutral Option Pricing 70 3.4.1 Proposed method 70 3.4.2 Empirical Studies 74 3.5 Chapter Summary 86 Chapter 4 Predictive Models for Blockchain and Cryptocurrency Market 89 4.1 Chapter Overview 89 4.2 Economics of Bitcoin and Blockchain 91 4.3 An Empirical Study on Modeling and Prediction of Bitcoin Prices Based on Blockchain Information 93 4.3.1 Data Specication and Structure of the Experiment 93 4.3.2 Linear Regression Analysis 99 4.3.3 Estimation and Prediction Results of Bitcoin Price 104 4.4 Enhanced GRU Framework for Correlation Analysis of Cryptocurrency Market 111 4.4.1 Enhanced GRU Framework 111 4.4.2 Empricial Studies 113 4.5 Chapter Summary 115 Chapter 5 Conclusion 119 5.1 Contributions 119 5.2 Future Work 122 Bibliography 125 ๊ตญ๋ฌธ์ดˆ๋ก 161Docto

    Impact of Network Connectedness

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022. 8. ์ด์žฌ์šฑ.๊ธˆ์œต ์ž์‚ฐ์€ ์–ธ์ œ๋‚˜ ๋ฆฌ์Šคํฌ์— ๋…ธ์ถœ๋˜์–ด ์žˆ๋‹ค. ์ด ๋ฆฌ์Šคํฌ์˜ ํฌ๊ธฐ์™€, ๊ฐ ์ž์‚ฐ์ด ๋ฆฌ์Šคํฌ์— ๋Œ€ํ•ด ์–ผ๋งˆ๋‚˜ ๋ณด์ƒ๋ฐ›๋Š” ์ง€๋ฅผ ์ •ํ™•ํžˆ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์€ ์ž์‚ฐ์˜ ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜• (asset pricing model)์€ ์ž์‚ฐ์˜ ๋ฆฌ์Šคํฌ์™€ ๊ทธ ๋ณด์ƒ์„ ํ†ตํ•ด์„œ ๊ธˆ์œต ์ž์‚ฐ์˜ ์ˆ˜์ต๋ฅ ์„ ์„ค๋ช…ํ•˜๋ ค ํ•˜๋Š” ๋ชจํ˜•์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์˜ ํ˜•ํƒœ ์ค‘ ํŒฉํ„ฐ ๋ชจ๋ธ์— ์ง‘์ค‘ํ•˜์˜€๋‹ค. ํŒฉํ„ฐ ๋ชจ๋ธ์€ ์ดˆ๊ณผ ์ˆ˜์ต๋ฅ ์„ ํŒฉํ„ฐ์™€ ๋ฒ ํƒ€๋กœ ๋ถ„๋ฆฌํ•ด์„œ ์„ค๋ช…ํ•˜๋Š” ๋ชจ๋ธ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํŒฉํ„ฐ ๋ชจ๋ธ๋“ค์€ ๊ฑฐ์‹œ ๊ธˆ์œต ๋ณ€์ˆ˜๋‚˜ ๊ธฐ์—… ๋ณ€์ˆ˜ ๋“ฑ์„ ํ†ตํ•˜์—ฌ ํŒฉํ„ฐ์™€ ๋ฒ ํƒ€๋ฅผ ์ถ”์ •ํ•˜๋Š”๋ฐ, ์ด ๋•Œ ์ž์‚ฐ ๊ฐ„์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ๋งŽ์ด ์ง„ํ–‰๋˜์ง€ ์•Š์•˜๋‹ค. ๊ธˆ์œต ์ž์‚ฐ๋“ค์€ ์„œ๋กœ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ด€๊ณ„์— ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ๊ฐ์˜ ์ˆ˜์ต๋ฅ  ๋˜ํ•œ ๊ฐœ๋ณ„์ ์ด ์•„๋‹ˆ๋ผ ์ž์‚ฐ ๊ฐ„์˜ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜๋ฉฐ ๋™์‹œ์— ํ‰๊ฐ€๋˜์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํŒฉํ„ฐ ๋ชจ๋ธ์— ์ž์‚ฐ ๊ฐ„์˜ ์—ฐ๊ฒฐ ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์‹ค์ฆ์  ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋จผ์ € ๊ทธ๋ž˜ํ”„ ์ธ๊ณต์‹ ๊ฒฝ๋ง (GNN)์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ฉ€ํ‹ฐ ํŒฉํ„ฐ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ๋•Œ ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ ๋งŒํผ์ด๋‚˜ ์ค‘์š”ํ•œ ๊ฒƒ์€ ์ž์‚ฐ ๊ฐ„ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•  ๊ฒƒ์ธ๊ฐ€๋ผ๋Š” ๋ฌธ์ œ์ด๋‹ค. GNN์€ ๊ทธ ์ž…๋ ฅ ๋ณ€์ˆ˜๋กœ์„œ ์ž˜ ์ •์˜๋œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ์š”๊ตฌํ•˜์ง€๋งŒ ์ž์‚ฐ ๊ฐ„์˜ ์—ฐ๊ฒฐ ๊ตฌ์กฐ๋Š” ๋ช…ํ™•ํ•˜๊ฒŒ ์ •์˜๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์‚ฐ ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ฑ์„ ํ”ผ์–ด์Šจ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์ถ”์ •ํ•˜๊ณ  ์ด๋ฅผ ํŠน์ • ์ž„๊ณ„๊ฐ’์„ ํ†ตํ•ด 0๊ณผ 1๋กœ ์ด์ง„ํ™” ์‹œํ‚ค๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ–ˆ๋‹ค. ์ œ์•ˆํ•œ ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ๋ฒ ํƒ€๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„๊ณผ ํŒฉํ„ฐ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋‰˜์–ด์ง€๋Š”๋ฐ, ๊ฐ๊ฐ ๊ธฐ์—… ๋ณ€์ˆ˜์™€, ์ˆ˜์ต๋ฅ ์„ ์ด์šฉํ•ด์„œ ์ถ”์ •ํ•œ๋‹ค. 1957๋…„๋ถ€ํ„ฐ ๋ฏธ๊ตญ์— ์ƒ์žฅ๋œ ์ฃผ์‹๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์‹ค์ฆ ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ์„ค๋ช…๋ ฅ๊ณผ ์˜ˆ์ธก ์„ฑ๋Šฅ ์ธก๋ฉด์—์„œ ๋ฒค์น˜๋งˆํฌ ๋ชจ๋ธ๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ํ†ต๊ณ„์  ์„ฑ๋Šฅ ์ด์™ธ์—๋„ ํŒฉํ„ฐ์˜ ๊ฒฝ์ œ์  ์˜๋ฏธ๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฉด์—์„œ, ์ œ์•ˆํ•œ ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์ถ”์ •ํ•œ ํŒฉํ„ฐ๊ฐ€ ๊ฐ€์žฅ ํšจ์œจ์ ์ธ ํ™•๋ฅ ์  ํ• ์ธ์š”์†Œ (stochastic discount factor)๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์  ์—ญ์‹œ ํ™•์ธํ•˜์˜€๋‹ค. ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ชฉ์ ์€ ์ˆ˜์ต๋ฅ ์ด์ง€๋งŒ, ๋ณ€๋™์„ฑ ๋˜ํ•œ ๊ธˆ์œต ์ž์‚ฐ์˜ ์›€์ง์ž„์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์„ฑ์งˆ์ด๋‹ค. ๋งŽ์€ ์‚ฌ์ „ ์—ฐ๊ตฌ์—์„œ ๋ฐํ˜€์กŒ๋“ฏ ์ˆ˜์ต๋ฅ ๊ณผ ๋ณ€๋™์„ฑ ์‚ฌ์ด์—๋Š” ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณ€๋™์„ฑ์€ ์ˆ˜์ต๋ฅ ์„ ์„ค๋ช…ํ•˜๋Š” ์š”์ธ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์—์„œ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ž์‚ฐ๋“ค ๊ฐ„์˜ ์—ฐ๊ฒฐ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์€ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์—์„œ๋„ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋ณ€๋™์„ฑ ๋ถ„์„์—์„œ๋Š” ์—ฌ๋Ÿฌ ์ž์‚ฐ์˜ ๋ณ€๋™์„ฑ์ด ์„œ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์„ ์Šคํ•„์˜ค๋ฒ„ (spillover)๋ผ ๋ถ€๋ฅธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์Šคํ•„์˜ค๋ฒ„ ํšจ๊ณผ๋ฅผ ์ง์ ‘์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ๋ณ€๋™์„ฑ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ๋ณ€๋™์„ฑ์˜ ์ธก๋ฉด์—์„œ ์ž์‚ฐ ๊ฐ„ ์—ฐ๊ฒฐ ๊ตฌ์กฐ๋ฅผ ๋ณ€๋™์„ฑ ์Šคํ•„์˜ค๋ฒ„ ์ง€์ˆ˜๋กœ ๊ตฌ์„ฑํ•œ ์ธ์ ‘ํ–‰๋ ฌ๋กœ ์ •์˜ํ•˜๋ฉฐ, ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋กœ๋Š” ์‹œ๊ณต๊ฐ„์  ๊ทธ๋ž˜ํ”„ ์ธ๊ณต์‹ ๊ฒฝ๋ง (spatial-temporal GNN)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ธ€๋กœ๋ฒŒ ์‹œ์žฅ ์ง€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์‹ค์ฆ ์‹คํ—˜์„ ํ†ตํ•ด์„œ ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ๋‹จ๊ธฐ์™€ ์ค‘๊ธฐ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์—์„œ ๋ฒค์น˜๋งˆํฌ ๋ชจ๋ธ์— ๋น„ํ•ด ๊ฐ€์žฅ ์ข‹์€ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ , ๋‹ค๋ฅธ ์‹œ์žฅ์— ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์‹œ์žฅ์„ ์ด์šฉํ•˜์—ฌ ๋‹ค๋ฅธ ์‹œ์žฅ์— ๋Œ€ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์— ๋ณ€๋™์„ฑ์„ ์ง์ ‘์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ชจํ˜• ๋‚ด์—์„œ ๋ณ€๋™์„ฑ์ด ์–ด๋–ป๊ฒŒ ์ •์˜๋˜๋Š”๊ฐ€๋ฅผ ๋จผ์ € ์‚ดํŽด๋ณด์•„์•ผ ํ•œ๋‹ค. ๋ณ€๋™์„ฑ์€ ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜• ๋‚ด์—์„œ ์ž”์ฐจ์˜ ํ‘œ์ค€ํŽธ์ฐจ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹œ๊ณ„์—ด ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ถ”์ •ํ•˜๋Š” ๊ธฐ์กด์˜ ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ถˆ๋ณ€ํ•˜๋Š” ๋ณ€๋™์„ฑ์„ ๊ฐ€์ •ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ๋ณ€๋™์„ฑ์„ ์˜ˆ์ธก ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์ถ”์ •ํ•˜๊ณ , ์ด๋ฅผ ํŒฉํ„ฐ ๋ชจ๋ธ์˜ ์†์‹คํ•จ์ˆ˜์— ์ •๊ทœํ™”๋กœ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ๋ณ€๋™์„ฑ์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๋Š” ํŒฉํ„ฐ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฏธ๊ตญ ์ƒ์žฅ ์ฃผ์‹์— ๋Œ€ํ•œ ์‹ค์ฆ ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ์‹œ๊ฐ„ ๋ถˆ๋ณ€ ๋ณ€๋™์„ฑ ์กฐ๊ฑด์„ ์™„ํ™”ํ•˜์ง€ ์•Š์€ ๋ชจ๋ธ์— ๋น„ํ•ด ๋ณ€๋™์„œ์ด ๋‚ฎ์€ ์‹œ๊ธฐ์—์„œ ํ†ต๊ณ„์  ์„ฑ๋Šฅ์ด ํฐ ํญ์œผ๋กœ ์ƒ์Šนํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ˜„์žฌ ๋ฌด์‹œํ•  ์ˆ˜ ์—†๋Š” ๊ทœ๋ชจ๋กœ ์„ฑ์žฅํ•œ ๊ฐ€์ƒํ™”ํ ์‹œ์žฅ์—๋Š” ๊ตฌ์กฐ์ ์œผ๋กœ ํ™•์‹คํ•˜๊ฒŒ ์—ฐ๊ฒฐ๋œ ์ž์‚ฐ์ด ์กด์žฌํ•œ๋‹ค. ๊ฐ™์€ ๋ธ”๋ก์ฒด์ธ ์ƒ์— ์กด์žฌํ•˜๋Š” ํ† ํฐ๋“ค์€ ํ•ด๋‹น ๋ธ”๋ก์ฒด์ธ ์œ„์—์„œ ๋ฐœํ–‰๋˜๊ณ  ๊ฑฐ๋ž˜๋˜๋ฏ€๋กœ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์ƒ์œผ๋กœ ์—ฐ๊ฒฐ์„ฑ์„ ์ง€๋‹Œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ž์„œ ์ง„ํ–‰๋œ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ์‘์šฉ์œผ๋กœ, ๋ช…ํ™•ํžˆ ๊ตฌ์กฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ์ž์‚ฐ๋“ค์ด ์ดˆ๊ณผ ์ˆ˜์ต๋ฅ ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์ธก์ • ๊ฐ€๋Šฅํ•œ ๊ณตํ†ต๋œ ํŒฉํ„ฐ๋ฅผ ๊ฐ€์ง์„ ๋ณด์ด๊ณ ์ž ํ–ˆ๋‹ค. ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ์„ ์ด๋”๋ฆฌ์›€ ๋ธ”๋ก์ฒด์ธ ์ƒ์˜ ํ† ํฐ๋“ค๋กœ ์ œํ•œํ•˜์—ฌ ์‹ค์ฆ ์‹คํ—˜์„ ์ง„ํ–‰ํ•œ ๊ฒฐ๊ณผ, EIP-1559 ์ ์šฉ ์ดํ›„์— ์ด๋”๋ฆฌ์›€ ๊ฐ€์Šค ์ˆ˜์ต๋ฅ ์ด ์‹œ์žฅ ์ˆ˜์ต๋ฅ ๊ณผ ํ•จ๊ป˜ ํ† ํฐ์˜ ์ˆ˜์ต๋ฅ ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ํŒฉํ„ฐ๋กœ์„œ ์ž‘์šฉํ•จ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ์ด๋”๋ฆฌ์›€ ๊ฐ€์Šค ์ˆ˜์ต๋ฅ ์€ ํ† ํฐ์˜ ๋ณ€๋™์„ฑ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์†Œ๋กœ, ํ† ํฐ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์—๋„ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ์š”์†Œ์ž„์„ ์Šคํ•„์˜ค๋ฒ„ ๊ธฐ๋ฐ˜ ๋ณ€๋™์„ฑ ์˜ˆ์ธก ๋ชจ๋ธ์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ž์‚ฐ ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ฑ์„ ๊ณ ๋ คํ•œ ์ž์‚ฐ๊ฐ€๊ฒฉ๊ฒฐ์ •๋ชจํ˜•์„ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด์„œ ๊ธˆ์œต ์ž์‚ฐ๋“ค์ด ๊ฐ–๋Š” ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ์‹ค์งˆ์ ์œผ๋กœ ์ˆ˜์ต๋ฅ ์— ์˜ํ–ฅ์„ ๋ฏธ์นจ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ํ–ฅํ›„ ์ƒˆ๋กœ์šด ๊ธˆ์œต ์‹œ์žฅ์— ๋Œ€ํ•ด์„œ๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ํ™•์žฅ์„ฑ ์žˆ๋Š” ๋ชจ๋ธ์ด๋ฉฐ, ๊ธˆ์œต ์ž์‚ฐ์˜ ํ‰๊ฐ€์— ์žˆ์–ด ์—ฌ๋Ÿฌ ์ž์‚ฐ์„ ๋™์‹œ์— ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜๋ฉฐ ํ‰๊ฐ€ํ•ด์•ผ ํ•œ๋‹ค๋Š” ํ•จ์˜์ ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค.Financial assets are always exposed to risks. It is important to evaluate the risk properly and figure out how much each asset is compensated for its risk. Asset pricing model explains the behavior of financial asset return by evaluating the risk and risk exposure of asset return. We focused on factor model structure among asset pricing models, which explains excess return through factor and beta coefficients. While conventional factor models estimate factor or beta through various macroeconomic variables or firm-specific variables, there exist fewer studies considering the connectedness between assets. Since financial assets have connected dynamics, asset returns should be priced simultaneously considering the graph structure of assets. In this dissertation, we proposed the AI-based empirical asset pricing model to reflect the connected structure between assets in the factor model. We first proposed the graph neural network-based multi-factor asset pricing model. As important as the structure of the model in constructing an asset pricing model that reflects the structure of the connection between assets is, how to define the connectivity. Graph neural network requires a well-defined graph structure. We defined the connectedness between assets as the binary converted Pearson correlation coefficients of asset returns by the cutoff value. The proposed model consists of a beta estimation part and a factor estimation part, where each part is estimated with firm characteristics and excess returns, respectively. The empirical analysis of U.S equities reveals that the proposed model has more explanatory power and prediction ability than benchmark models. In addition, the most efficient stochastic discount factor can be estimated from the estimated factors. While return is the main object of asset pricing, volatility is also important property for explaining the behavior of financial assets. Volatility can be the factor in explaining return since many studies point out that return and volatility are correlated. As with the asset pricing model, considering the connected structure between assets in volatility prediction can be of great help in explaining the dynamics of assets. In the volatility analysis, what affects between volatility is called spillover. In this aspect, we proposed the volatility prediction model that can directly reflect this spillover effect. We estimated the graph structure between asset volatility using the volatility spillover index and utilized the spatial-temporal graph neural network structure for model construction. From the empirical analysis of global market indices, we confirm that the proposed model shows the best performance in short- and mid-term volatility forecasting. To include volatility in the asset pricing discussion, it is necessary to focus on how volatility is defined in the asset pricing model. In the asset pricing model, volatility can be interpreted as the variance of the residual of the model. However, asset pricing models with time-series estimation mostly have time-unvarying volatility constraints. We constructed an asset pricing model with time-varying volatility by estimating variability using the prediction model and reflecting it in the training loss of the asset pricing model. We identify that the proposed model can improve the statistical performance during the low volatility period through an empirical study of U.S equities. Currently, there are clearly structurally connected assets in the cryptocurrency market, which has grown to a scale that cannot be ignored. All of the same blockchain-based tokens are issued and traded on that blockchain, so they have strong structural connectivity. We tried to identify that an observable factor for explaining excess return exists in such connected tokens as an application of previous studies. We limited the analysis target to Ethereum-based tokens and showed that the Ethereum gas price became a factor for the macroeconomic factor model after the application of EIP-1559. Furthermore, we applied the volatility spillover index-based volatility prediction model using gas return and showed that gas return can increase the prediction performance of certain tokens' volatility.Chapter 1 Introduction 1 1.1 Motivation of the Dissertation 1 1.2 Aims of the Dissertation 10 1.3 Organization of the Dissertation 13 Chapter 2 Graph-based multi-factor asset pricing model 14 2.1 Chapter Overview 14 2.2 Preliminaries 17 2.2.1 Graph Neural Network 17 2.2.2 Graph Convolutional Network 18 2.3 Methodology 19 2.3.1 Multi-factor asset pricing model 19 2.3.2 Proposed method 21 2.3.3 Forward stagewise additive factor modeling 23 2.4 Empirical Studies 24 2.4.1 Data 24 2.4.2 Benchmark models 24 2.4.3 Empirical results 28 2.5 Chapter Summary 33 Chapter 3 Volatility prediction with volatility spillover index 37 3.1 Chapter Overview 37 3.2 Preliminaries 41 3.2.1 Realized Volatility 41 3.2.2 Volatility Spillover Measurements 42 3.2.3 Benchmark Models 45 3.3 Empirical Studies 50 3.3.1 Data 50 3.3.2 Descriptive Statistics 51 3.3.3 Proposed Method 52 3.3.4 Empirical Results 54 3.4 Chapter Summary 61 Chapter 4 Graph-based multi-factor model with time-varying volatility 64 4.1 Chapter overview 64 4.2 Preliminaries 67 4.2.1 Local-linear regression for time-varying parameter estimation 67 4.3 Methodology 68 4.3.1 Time-varying volatility implied loss function 68 4.3.2 Proposed model architecture 70 4.4 Empirical Studies 72 4.4.1 Data 72 4.4.2 Benchmark Models 72 4.4.3 Empirical Results 73 4.5 Chapter Summary 79 Chapter 5 Macroeconomic factor model and spillover-based volatility prediction for ERC-20 tokens 82 5.1 Chapter Overview 82 5.2 Preliminaries 85 5.3 Methodology 86 5.3.1 Relation analysis 86 5.3.2 Factor model analysis 89 5.3.3 Volatility prediction with volatility spillover index 90 5.4 Empirical Studies 90 5.4.1 Data 90 5.4.2 Empirical Results 98 5.5 Chapter Summary 102 Chapter 6 Conclusion 105 6.1 Contributions 105 6.2 Future Work 108 Bibliography 109 ๊ตญ๋ฌธ์ดˆ๋ก 130๋ฐ•

    Forecasting mid-price movement of Bitcoin futures using machine learning

    Full text link
    In the aftermath of the global financial crisis and ongoing COVID-19 pandemic, investors face challenges in understanding price dynamics across assets. This paper explores the performance of the various type of machine learning algorithms (MLAs) to predict mid-price movement for Bitcoin futures prices. We use high-frequency intraday data to evaluate the relative forecasting performances across various time frequencies, ranging between 5 and 60-min. Our findings show that the average classification accuracy for five out of the six MLAs is consistently above the 50% threshold, indicating that MLAs outperform benchmark models such as ARIMA and random walk in forecasting Bitcoin futures prices. This highlights the importance and relevance of MLAs to produce accurate forecasts for bitcoin futures prices during the COVID-19 turmoil

    Every crypto breath in the world : the current global position of the cryptocurrency market and future prediction

    Get PDF
    This study was motivated by the breakthrough of cryptocurrencies in 2018. The other main reasons behind the motivation are the total market capitalisation of one trillion-dollar diversification possibilities and the lack of preceding scientific research to identify the portfolio diversification possibilities of cryptocurrencies from many angles. Four empirical studies were conducted to provide a holistic view of cryptocurrency as an investment tool. The first study investigated the portfolio diversification possibilities between cryptocurrencies and traditional financial markets. A quantitative method was employed with Cointegration, ARDL bound testing approach, causality, and co-movement testing. Applying Modern portfolio theory to identify the diversification possibilities between the aforementioned markets enabled the study to highlight how investors can reap the benefits of cryptocurrencies. The second study extended the investigation of the portfolio diversification possibilities of cryptocurrency by including precious metals and cryptocurrencies in the same investment basket. Investors switch from traditional investment assets, such as equity and debt market instruments, to precious metal markets to reap benefits. Therefore, this study investigates how cryptocurrency can be an alternative source of investment to include in an investment portfolio. The daily precious metal and cryptocurrency data from 2017 to 2022 was utilised through an ARDL framework to obtain the Cointegration between cryptocurrency, precious metal and across cryptocurrencies. Modern portfolio theory is used to identify the diversification possibilities in this study with different portfolio diversification strategies. The third study clarified the cryptocurrency stakeholders to identify the global perception of cryptocurrency investments. A qualitative method was employed with sentiment analysis, followed by data extractions from the global databases using machine learning algorithms. The study identified the percentage of stakeholder groups' positive, negative, and neutral perceptions of cryptocurrency. The main obstacles hindering cryptocurrency investment growth are the fear of current scams, lack of definitional issues and the absence of a legal framework in some countries. The fourth study included the findings from the first, second and third studies to develop a cryptocurrency predictive model by factoring in macroeconomic variables. Panel data regression with fixed and dynamic effects was employed to analyse the data from 2017 to 2002. The findings suggest the impact of each macroeconomic variable selected in the study for the cryptocurrency price changes while adding more significance to technological variables. The overall findings provide strong support for the portfolio diversification possibilities of cryptocurrencies. Inclusions of the wide range of investment classes, exploring stakeholder perception and highlighting the macroeconomic variables' influence on the cryptocurrency price prediction generate new insights and valuable comparisons about cryptocurrency markets for academia, crypto issuers, investors, government, policymakers, and fund managers to use as an investment and decision-support tools. Keywords: Cryptocurrency, ARDL, Financial Markets, Cointegration, Causality, Portfolio diversification, Precious Metals, Predictive model.Doctor of Philosoph

    Assessing machine learning performance in cryptocurrency market price prediction

    Get PDF
    Cryptocurrencies, which are digitally encrypted and decentralized, continue to attract attention of ย nancial market players across the world. Because of high volatility in cryptocurrency market, predicting price of cryptocurrencies has become one of the most complicated ย elds in ย nancial markets. In this paper, we use Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models to predict price of four well-known cryptocurrencies of Bitcoin (BTC), Ethereum(ETH), Litecoin (LTC), and Ripple (XRP). These models are subdivisions of Articial Intelligence, machine learning and data science. The main aim of this paper is to compare the accuracy of above-mentioned models in forecasting time series data, to ย nd out which model can better predict price in these four cryptocurrencies. 43 variables consisting of 28 technical indicators and t+10 lags were calculated and appended to the Open, High, Low, Close and Volume (OHLCV) data for selected cryptocurrencies. Applying random forest as feature selection, 25 variables werechosen, 24 of them selected as feature (independent variables) and one as a dependent variable. Each attribute value was converted into a relative standard score, followed by Min-max scaling; we compare models and results of Dieblod Mariano test that is used to examine whether the differences in predictive accuracy with these two models are signi cant, reveal that LSTM reaches better accuracy than GRU for BTC and ETH, but both models convey the same accuracy for LTC and XRP

    ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ž์‚ฐ ๋ฐฐ๋ถ„ ์ „๋žต ๋ฐ ๋””์ง€ํ„ธ ์ž์‚ฐ ํˆฌ์ž

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022. 8. ์ด์žฌ์šฑ.์ž์‚ฐ ๋ถ„์‚ฐํ™”์™€ ์œ„ํ—˜ ๊ด€๋ฆฌ๋Š” ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ์˜ ํ•ต์‹ฌ ์š”์†Œ์ด๋‹ค. ์ž์‚ฐ ๋ถ„์‚ฐํ™”๋ž€ ์ž์‚ฐ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ถ”์ •ํ•˜์—ฌ ์ž์‚ฐ ๋ฐฐ๋ถ„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์ž์‚ฐ ํฌํŠธํด๋ฆฌ์˜ค์— ๋Œ€ํ•œ ๋ถ„์‚ฐ ํšจ๊ณผ๋ฅผ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์œ„ํ—˜ ๊ด€๋ฆฌ๋ž€ ์ž์‚ฐ์˜ ์ž ์žฌ์  ์œ„ํ—˜๊ณผ ๋ณ€๋™์„ฑ์„ ์ถ”์ •ํ•˜์—ฌ ์ž์‚ฐ ๋ฐฐ๋ถ„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฃผ์–ด์ง„ ํฌํŠธํด๋ฆฌ์˜ค์— ๋Œ€ํ•œ ํ•˜๋ฐฉ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ์˜ ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ์ ˆ์ฐจ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ ์ ˆํ•œ ์ž์‚ฐ ๋ฐฐ๋ถ„ ์ „๋žต ์‹œํ–‰์„ ์œ„ํ•œ ๋ชจํ˜• ๊ฐœ์„  ๋ฐ ์‹œํ–‰์ด๋‹ค. ๋ชจํ˜•์ด ๊ฐ€์ง„ ๋‚ด์žฌ์  ํ•œ๊ณ„๋กœ ์ธํ•ด ์ž์‚ฐ ๋ฐฐ๋ถ„ ์ „๋žต์„ ์ ์ ˆํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ, ํ•ด๋‹น ํฌํŠธํด๋ฆฌ์˜ค ๋ชจํ˜•์ด ์ถ”๊ตฌํ•˜๋Š” ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋˜์–ด ๋ฐ”๋žŒ์งํ•˜์ง€ ์•Š์€ ํฌํŠธํด๋ฆฌ์˜ค๊ฐ€ ๊ตฌ์ถ•๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชฉํ‘œ๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ž์‚ฐ์„ ํฌํ•จํ•˜๋Š” ํฌํŠธํด๋ฆฌ์˜ค์— ๋Œ€ํ•œ ๋ถ„์‚ฐ ํšจ๊ณผ์™€ ํ•œ๊ฐ€์ง€ ์ž์‚ฐ์— ๋Œ€ํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๊ฐ€์น˜ ๋ฐฉ์–ด๋ฅผ ํ†ตํ•œ ์œ„ํ—˜ ๊ด€๋ฆฌ๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋‘˜์งธ, ํˆฌ์ž๋ฅผ ์œ„ํ•œ ์ž์‚ฐ๊ตฐ ์„ ํƒ์ด๋‹ค. ๊ธฐ์กด์˜ ์ž์‚ฐ๊ตฐ๊ณผ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์ž‘์€ ์ƒˆ๋กœ์šด ์ž์‚ฐ๊ตฐ์— ๋Œ€ํ•œ ์„ ํƒ์ด ํšจ์œจ์ ์ธ ํฌํŠธํด๋ฆฌ์˜ค ๊ตฌ์ถ•์— ์žˆ์–ด ์ž ์žฌ์ ์œผ๋กœ ํฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ๊ณผ ์ ˆ์ฐจ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ž์‚ฐ ๋ถ„์‚ฐํ™”์™€ ์œ„ํ—˜ ๊ด€๋ฆฌ ๊ฐ๊ฐ์˜ ๊ด€์ ์— ๋Œ€ํ•˜์—ฌ, ์ฒซ์งธ, ๊ธฐ์กด ํฌํŠธํด๋ฆฌ์˜ค ๋ชจํ˜•์˜ ๊ตฌ์ถ• ๋ฐ ๋ชจ์ˆ˜ ์ถ”์ •์— ๋Œ€ํ•œ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ์ƒˆ๋กœ์šด ๋””์ง€ํ„ธ ์ž์‚ฐ ์‹œ์žฅ์— ๋Œ€ํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์— ๋”ฐ๋ผ, ๋ณธ ๋…ผ๋ฌธ์˜ ๊ตฌ์ฒด์ ์ธ ๋ชฉํ‘œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‘ ๊ฐ€์ง€๋กœ ์ •๋ฆฌ๋  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ๋ชจํ˜• ๊ตฌ์ถ• ๋ฐ ๋ชจ์ˆ˜ ์ถ”์ •์— ๋Œ€ํ•œ ํ•œ๊ณ„์ ์„ ๊ฐ–๋Š” ๊ธฐ์กด ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ์ „๋žต์˜ ๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์˜ ์ „๋ง ๊ตฌ์ถ•๊ณผ ํ•ฉ์„ฑ ํ’‹ ์˜ต์…˜ ์ „๋žต์˜ ๋ชจ์ˆ˜ ์ถ”์ •์— ๋Œ€ํ•œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋‘˜์งธ, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ๊ณผ ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์„ ํฌํ•จํ•˜๋Š” ๋””์ง€ํ„ธ ์ž์‚ฐ ์‹œ์žฅ์— ๊ด€ํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๋ถ„์„ ๋ฐ ์‹ค์ฆ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋•Œ, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ์— ๋Œ€ํ•ด์„œ๋Š” ๋งˆ์ฝ”์œ„์ธ ์˜ ํ‰๊ท -๋ถ„์‚ฐ ๋ชจํ˜•์„, ์•”ํ˜ธํ™”ํ์— ๋Œ€ํ•ด์„œ๋Š” ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ๋ชจํ˜•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด, ์ž์‚ฐ ์ˆ˜์ต๋ฅ  ์ด์™ธ์˜ ์™ธ๋ถ€์ ์ธ ๊ธˆ์œต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์˜๋ฏธ ์žˆ๋Š” ํŒจํ„ด์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์˜ ์ „๋ง ๊ตฌ์ถ•์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจํ˜•์„ ์ œ์•ˆํ•˜์˜€๊ณ , ์ด์— ๋Œ€ํ•œ ์‹ค์ฆ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด ๋ณด์•˜๋‹ค. ๋˜ํ•œ, ํ•ฉ์„ฑ ํ’‹ ์˜ต์…˜ ์ „๋žต์—์„œ ์š”๊ตฌํ•˜๋Š” ๋ณ€๋™์„ฑ ๋ชจ์ˆ˜ ์ถ”์ •์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ณ€๋™์„ฑ ์˜ˆ์ธก ๋ชจํ˜•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ์„ ๋œ ํ•ฉ์„ฑ ํ’‹ ์˜ต์…˜ ์ „๋žต์„ ์ œ์•ˆํ•˜๊ณ , ์ด์— ๋Œ€ํ•œ ์‹ค์ฆ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด์„œ๋Š”, ๊ธฐ์กด ์ž์‚ฐ ๊ธฐ๋ฐ˜ ํฌํŠธํด๋ฆฌ์˜ค์— ๋Œ€ํ•ด ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ์ด ์ƒˆ๋กœ์šด ์ž์‚ฐ๊ตฐ์œผ๋กœ์จ ๋ถ„์‚ฐ ํšจ๊ณผ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‚ดํŽด๋ด„์œผ๋กœ์จ ๊ทธ ๊ฒฝ์ œํ•™์  ๊ฐ€์น˜๋ฅผ ๊ฒ€์ฆํ•ด ๋ณด์•˜๊ณ , ๋‹ค์–‘ํ•œ ์œ„ํ—˜ ์ธก์ • ์ง€ํ‘œ์™€ ํˆฌ์ž์ž ํšจ์šฉ ์ธก๋ฉด์—์„œ ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ์ „๋žต์— ๋Œ€ํ•œ ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์—์„œ์˜ ์‹ค์ฆ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ์‹ค์ฆ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ธฐ์—… ํŠน์„ฑ ๋ณ€์ˆ˜๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ์ „๋ง์— ๋ฐ˜์˜ํ•˜์˜€์„ ๋•Œ, ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์—์„œ ์‚ฐ์ถœ๋œ ํฌํŠธํด๋ฆฌ์˜ค์˜ ์ˆ˜์ต๋ฅ  ๋ถ„ํฌ๊ฐ€ ๊ฐœ์„ ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ธฐ์—… ํŠน์„ฑ ๋ณ€์ˆ˜๋ฅผ ๋ฐ˜์˜ํ•  ๋•Œ, ๊ณผ๊ฑฐ์˜ ์ •๋ณด๋ฅผ ๋‹จ์ˆœํžˆ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ์˜ˆ์ธก ๋ฐฉ์‹์œผ๋กœ ๋ฐ˜์˜ํ•  ๋•Œ ํ‘œ๋ณธ ์™ธ ์„ฑ๋Šฅ ์ธก๋ฉด์—์„œ ํ›จ์”ฌ ํฐ ๊ฐœ์„ ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•ด๋‹น ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š”, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๊ธฐ์—… ํŠน์„ฑ ๋ณ€์ˆ˜ ๊ธฐ๋ฐ˜ ์ „๋ง ๊ตฌ์ถ• ๋ฐฉ๋ฒ•๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์„ ํ†ตํ•ด ๋” ์ž˜ ๋ถ„์‚ฐ๋˜๊ณ  ๋”์šฑ ํšจ์œจ์ ์ธ ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋‘˜์งธ, ๊ณ„๋Ÿ‰ ๊ฒฝ์ œ ๋ชจํ˜• ๋ฐ ํฌํŠธํด๋ฆฌ์˜ค ์‹ค์ฆ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ์€ ๊ธฐ์กด ์ž์‚ฐ์— ์‹œ์žฅ์— ๋Œ€ํ•ด ํ—ค์ง€, ์•ˆ์ „ ํ”ผ๋‚œ์ฒ˜, ๋ถ„์‚ฐ ํšจ๊ณผ๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ์ฆ๊ฑฐ๋ฅผ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ์€ ์—ฌ๋Ÿฌ ๊ตญ๊ฐ€์˜ ์ฃผ์‹ ์‹œ์žฅ, ์›์œ  ์‹œ์žฅ, ์ฑ„๊ถŒ ์‹œ์žฅ, ๋‹ฌ๋Ÿฌ ์ง€์ˆ˜์— ๋Œ€ํ•ด ํ—ค์ง€ ๋ฐ ์•ˆ์ „ ํ”ผ๋‚œ์ฒ˜ ํšจ๊ณผ๋ฅผ ๋ณด์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์„ฑ์€ ์ž์‚ฐ ์ˆ˜์ต๋ฅ  ๋ฐ์ดํ„ฐ์˜ ํ•ด์ƒ๋„๊ฐ€ ๋ณ€ํ•จ์— ๋”ฐ๋ผ ๊ทธ ์ •๋„๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค. ํŠนํžˆ COVID-19 ์œ„๊ธฐ ๋™์•ˆ, ์ฑ„๊ถŒ ์‹œ์žฅ ๋ฐ ๋‹ฌ๋Ÿฌ ์ง€์ˆ˜์— ๋Œ€ํ•ด ๋”์šฑ ๊ฐ•ํ•œ ๊ฐ•๋„์˜ ์•ˆ์ „ ํ”ผ๋‚œ์ฒ˜ ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ ์‹œ์žฅ์€ ๊ธฐ์กด ์ž์‚ฐ ์‹œ์žฅ๊ณผ ๋งค์šฐ ๊ตฌ๋ณ„๋˜๋Š” ์ž์‚ฐ ์‹œ์žฅ์œผ๋กœ์จ, ์ƒ๊ด€๊ด€๊ณ„, ๊ณตํ–‰์„ฑ, ๋ณ€๋™์„ฑ ์Šคํ•„์˜ค๋ฒ„ ํšจ๊ณผ ๋ฐ ๋งˆ์ฝ”์œ„์ธ ์˜ ํ‰๊ท -๋ถ„์‚ฐ ํฌํŠธํด๋ฆฌ์˜ค ๋ชจํ˜•์„ ํ†ตํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ์ด ๊ธฐ์กด ์ž์‚ฐ๊ตฐ์— ๋Œ€ํ•œ ๊ฐ•ํ•œ ๋ถ„์‚ฐ ํšจ๊ณผ๋ฅผ ๊ฐ€์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ์˜ ํŽธ์ž…์ด ๊ท ๋“ฑ ๋ฐฐ๋ถ„ ํฌํŠธํด๋ฆฌ์˜ค ๋ชจํ˜•๊ณผ ์ ‘์  ํฌํŠธํด๋ฆฌ์˜ค ๋ชจํ˜•์„ ์ƒคํ”„ ๋น„์œจ ์ธก๋ฉด์—์„œ ํฌ๊ฒŒ ๊ฐœ์„  ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์…‹์งธ, ํฌํŠธํด๋ฆฌ์˜ค ๊ฐ€์น˜ ๋ฐฉ์–ด ์˜ค์ฐจ ์ธก๋ฉด์—์„œ ํ•ฉ์„ฑ ํ’‹ ์˜ต์…˜ ์ „๋žต์— ๋ณ€๋™์„ฑ ๋ชจ์ˆ˜ ์ถ”์ • ์˜ค์ฐจ์— ์˜ํ•œ ์•…์˜ํ–ฅ์ด ์กด์žฌํ•จ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ๊ธˆ์œต ์‹œ์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ํฌํŠธํด๋ฆฌ์˜ค ๊ฐ€์น˜ ๋ฐฉ์–ด ์˜ค์ฐจ๋Š” ์ด๋Ÿฌํ•œ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์˜ ์ •ํ™•๋„์™€ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ†ต๊ณ„์ ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š”, ๋”์šฑ ์ •ํ™•ํ•œ ๋ณ€๋™์„ฑ ์˜ˆ์ธก ๋ชจํ˜•์„ ํ†ตํ•ด ํ•ฉ์„ฑ ํ’‹ ์˜ต์…˜์˜ ๋ชจ์ˆ˜ ์ถ”์ • ์˜ค์ฐจ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์‹ค์ฆ์ ์œผ๋กœ ํ™•์ธํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋กœ์จ, ์ „ํ†ต์ ์ธ ๋ณ€๋™์„ฑ ์˜ˆ์ธก ๋ฐฉ๋ฒ•๋ก  ๋ฐ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ณ€๋™์„ฑ ์˜ˆ์ธก ๋ฐฉ๋ฒ•๋ก  ๋ชจ๋‘ ๋‹จ์ˆœ ๋ชจํ˜•๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์ข‹๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ๊ทธ์ค‘ ์ต์ŠคํŠธ๋ฆผ ๊ทธ๋ผ๋””์–ธํŠธ ๋ถ€์ŠคํŒ… (XGB) ๋ชจํ˜•์ด ํฌํŠธํด๋ฆฌ์˜ค ๊ฐ€์น˜ ๋ฐฉ์–ด ์˜ค์ฐจ ๋ฐ ๋ณ€๋™์„ฑ ์˜ˆ์ธก ์˜ค์ฐจ ์ธก๋ฉด์—์„œ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์„ฑ์€ ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์ด ๊ธฐ์กด์˜ ๋ชจํ˜• ๋ณด๋‹ค ์‹คํ˜„ ๋ณ€๋™์„ฑ (realized volatility)์˜ ๋ณต์žกํ•œ ํŒŒ๋™ ํŒจํ„ด์„, ๋งค์šฐ ๋ณ€๋™์„ฑ์ด ํฐ ์‹œ์žฅ ์ƒํ™ฉ์—์„œ๋„ ๋”์šฑ ์ž˜ ์žก์•„๋‚ธ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ง€์ง€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ•˜๋ฐฉ ์œ„ํ—˜ ์ธก๋ฉด์—์„œ, ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ์ „๋žต๋“ค์ด ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์—์„œ ๋ฒค์น˜๋งˆํฌ ๋ฐฉ๋ฒ•๋ก ๋ณด๋‹ค ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ์‹ค์ฆ์ ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ์ „๋žต๋“ค์€ ๋งค์ˆ˜ ํ›„ ๋ณด์œ  ์ „๋žต๋ณด๋‹ค ๋” ์ž‘์€ ์œ„ํ—˜์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ํšจ์šฉํ•จ์ˆ˜์˜ ๊ณก๋ฅ  ์ธก๋ฉด์—์„œ, ์ „๋ง ์ด๋ก  ํˆฌ์ž์ž์˜ ํฌํŠธํด๋ฆฌ์˜ค ์„ ํƒ๊ณผ ๊ธฐ๋Œ€ ํšจ์šฉ ์ด๋ก  ํˆฌ์ž์ž์˜ ํฌํŠธํด๋ฆฌ์˜ค ์„ ํƒ์˜ ๊ฒฝํ–ฅ์„ฑ์ด ์„œ๋กœ ๋ฐ˜๋Œ€๋กœ ๋‚˜ํƒ€๋‚จ์„ ๋ฐœ๊ฒฌ ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š”, ์ „๋ง ์ด๋ก  ํˆฌ์ž์ž์— ๋Œ€ํ•˜์—ฌ ์ด์ต ๋Œ€๋น„ ์†์‹ค์˜ ์˜ํ–ฅ๋ ฅ์ด ๋” ํด ์ˆ˜ ์žˆ์Œ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด, ํˆฌ์ž์ž์˜ ์†์‹ค ํšŒํ”ผ ๊ฒฝํ–ฅ์ด ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ์ „๋žต์— ๋Œ€ํ•œ ํˆฌ์ž์ž์˜ ์„ ํ˜ธ๋ฅผ ๋”์šฑ ๊ฐ•ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐ€์žฅ ๋†€๋ผ์šด ๊ฒฐ๊ณผ๋กœ์จ, ํˆฌ์ž์ž๊ฐ€ ์–ด๋–ค ํšจ์šฉ ํ•จ์ˆ˜๋ฅผ ๋”ฐ๋ฅด๋Š”์ง€์— ๊ด€๊ณ„์—†์ด, ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์—์„œ ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ์ „๋žต์ด ๋งค์ˆ˜ ํ›„ ๋ณด์œ  ์ „๋žต ๋ณด๋‹ค ๋†’์€ ํšจ์šฉ์„ ์ฃผ๋Š” ์˜์—ญ์ด ๊ธฐ์กด ์ž์‚ฐ ์‹œ์žฅ์—์„œ๋ณด๋‹ค ๋” ๋„“์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ์ „๋žต์ด ๋” ๋งŽ์€ ์ˆ˜์˜ ์•”ํ˜ธํ™”ํ ํˆฌ์ž์ž์— ๋Œ€ํ•ด ์œ„ํ—˜ ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ๋” ํฐ ๊ฒฝ์ œํ•™์  ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•ด ์ค„ ์ˆ˜ ์žˆ์Œ์„ ์‹ค์ฆํ•˜๋Š” ๊ฒฐ๊ณผ๋ผ๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์˜ ๋‹ค์ค‘ ์ž์‚ฐ ํฌํŠธํด๋ฆฌ์˜ค์™€ ํ•ฉ์„ฑ ํ’‹ ์˜ต์…˜ ์ „๋žต์˜ ๊ฐœ๋ณ„ ์ž์‚ฐ ํฌํŠธํด๋ฆฌ์˜ค์— ๋Œ€ํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ๋ชจํ˜•์„ ์ž์‚ฐ ๋ถ„์‚ฐํ™”์™€ ์œ„ํ—˜ ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ๊ฐœ์„ ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋งˆ์ฝ”์œ„์ธ ์˜ ํ‰๊ท -๋ถ„์‚ฐ ๋ชจํ˜•๊ณผ ํฌํŠธํด๋ฆฌ์˜ค ๋ณดํ—˜ ๋ชจํ˜•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€์ฒด๋ถˆ๊ฐ€๋Šฅ ํ† ํฐ๊ณผ ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์„ ํฌํ•จํ•œ ์ƒˆ๋กœ์šด ๋””์ง€ํ„ธ ์ž์‚ฐ ์‹œ์žฅ์—์„œ์˜ ํฌํŠธํด๋ฆฌ์˜ค ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ํˆฌ์ž์ž๋“ค์€ ์ž์‚ฐ ๋ถ„์‚ฐํ™”์™€ ์œ„ํ—˜ ๊ด€๋ฆฌ ๊ด€์ ์—์„œ ๋”์šฑ ๊ฐœ์„ ๋œ ํฌํŠธํด๋ฆฌ์˜ค ์ „๋žต์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ฐœ์„ ๋œ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๋”์šฑ๋” ํšจ์œจ์ ์ด๊ณ  ๋ฐ”๋žŒ์งํ•œ ํˆฌ์ž ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.The core of portfolio management is asset diversification and risk management. Asset diversification is to maximize the diversification effect for a multi-asset portfolio based on asset allocation by estimating the correlation between assets. Risk management is to minimize the downside risk for a given portfolio based on asset allocation by estimating the potential risk and volatility of an asset. The essential portfolio management procedure is twofold; (i) model improvement and implementation for appropriate model specifications and portfolio construction and (ii) asset class selection for investment. The first part is necessary to implement the strategy adequately to achieve the aim of that model, such as robust multi-asset portfolio management via asset diversification and single asset risk management via robust protection level maintenance. The second part is vital because a new asset class uncorrelated to the traditional asset class has potential opportunities for efficient portfolio construction. Accordingly, this dissertation focuses on research from two perspectives dealing with the above two essential procedures. Regarding the perspective of asset diversification and risk management, the first is a study on addressing and improving the existing portfolio strategy models' limitations in model construction and estimation of input parameters for appropriate model specification. The second is a portfolio analysis of new emerging asset markets. The first aim of this dissertation is to improve the existing portfolio management strategy in model construction for the Blackโ€“Litterman framework and input parameter estimation for the synthetic put strategy for the appropriate model specification. The second aim is to investigate the empirical results using portfolio analysis in the emerging digital asset markets, including Non-Fungible Tokens (NFTs) and the cryptocurrency market, based on the mean-variance framework or portfolio insurance framework. For the first aim, we propose to use machine learning-based models to extract the meaningful pattern of external financial data for the Blackโ€“Litterman model using firm characteristics. Furthermore, we propose to use machine learning-based forecasting models to estimate the input parameters required for portfolio insurance strategy to mitigate the difficulty of addressing complex financial data. For the second aim, we examine the economic value of NFT in terms of diversification effect on traditional asset-based portfolios and portfolio insurance strategy results regarding various risk measures and investor's utility in the cryptocurrency market. The main findings in this dissertation are summarized as follows. First, our empirical results show that combining characteristics into view improves the distribution of portfolio returns in the Blackโ€“Litterman approach. Furthermore, prediction via machine learning affects improvement in the out-of-sample performance compared to using past information. Our study suggests that using the proposed model can result in a more efficient and diversified portfolio of the Blackโ€“Litterman framework. Second, our empirical results of portfolio analysis in the NFT market show evidence of the hedge, safe haven, and diversification properties of NFTs, confirming two main findings: (i) NFTs act as a hedge and safe haven for several country's stock markets and oil, bond, and USD indices and these effects in stock markets fade as frequency changes, especially showing stronger safe haven benefits for bond and USD indices during the COVID-19 periods, and (ii) NFTs are distinct from traditional assets, potentially resulting in portfolio diversification which is confirmed by preliminary analysis including correlation, co-movement, and volatility spillover and portfolio analysis based on Markowitz's meanโ€“variance framework, improving the performance of equally weighted and tangency portfolio strategies in terms of Sharpe ratio. Third, our findings indicate that the adverse effect of volatility misestimation exists in terms of protection level error in the synthetic put strategy. We surprisingly find the protection error of insured portfolios directly linked to the precision of volatility forecasting, implying that this misestimation issue can be mitigated by employing more accurate volatility forecasting models. Another finding is that all methodologies, including traditional and machine learning-type, are better than the naive approach. Moreover, machine learning-type models, especially XGB, are the best in terms of protection and forecasting error in implementing the synthetic put strategy. This tendency supports the evidence that machine learning is better than traditional models in capturing the complex fluctuation pattern of realized volatility in highly volatile market conditions. Finally, our findings demonstrate the outperformance of portfolio insurance strategies in terms of skewness and downside risks in the cryptocurrency market. It reveals the lower-risk feature of these strategies compared to buy-and-hold. Moreover, we surprisingly find that, in terms of curvature, the portfolio choice of prospect theory investors is opposite to the expected utility theory investors. It implies the greater impact of losses than gains on the prospect theory investors. The larger loss-aversion propensity reinforces investors' preference for portfolio insurance strategies. As the most shocking result, we find portfolio insurance, when compared to the buy-and-hold strategy, provides a better opportunity to offer a higher utility in the cryptocurrency market than the traditional stock market, regardless of the investor's utility. It implies that portfolio insurance strategies can provide greater economic value in terms of risk management for a larger number of cryptocurrency investors. By improving the portfolio management models in terms of asset diversification of the multi-asset portfolio of the Blackโ€“Litterman model and risk management of a given portfolio or a single asset of synthetic put strategy, and by examining the portfolio analysis in new digital asset markets such as NFT and cryptocurrency market based on mean-variance and portfolio insurance framework, this dissertation's overall findings can help investors achieve an improved portfolio strategy and obtain a more efficient and well-diversified portfolio for the improved portfolio management.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Aims of the Dissertation 11 1.3 Organization of the Dissertation 13 Chapter 2 Blackโ€“Litterman model considering firm characteristic variables 15 2.1 Chapter overview 15 2.2 Data and Methodology 17 2.2.1 Data 17 2.2.2 Methodology 18 2.3 Empirical results 25 Chapter 3 Portfolio analysis for Non-Fungible Token market 28 3.1 Chapter overview 28 3.2 Data 31 3.2.1 Data for a hedge and safe haven effect 32 3.2.2 Data for a diversification effect 33 3.3 Methodology 36 3.3.1 Methods for a hedge and safe haven effect 36 3.3.2 Methods for a diversification effect 38 3.4 Empirical results 41 3.4.1 Results of a hedge and safe haven effect 41 3.4.2 Results of a diversification effect 49 Chapter 4 Volatility forecasting for portfolio insurance strategy 57 4.1 Chapter overview 57 4.2 Data 63 4.2.1 The Monte Carlo simulation data 63 4.2.2 The real-world data 66 4.3 Portfolio insurance strategy 69 4.3.1 Synthetic put strategy 69 4.3.2 Protection level error 73 4.4 Volatility forecasting models 76 4.4.1 Naive model 76 4.4.2 GARCH-type models 77 4.4.3 HAR-RV-type models 79 4.4.4 Machine learning-type models 81 4.4.5 Forecasting performance measure and statistical test 89 4.5 Experimental design and procedure 90 4.5.1 The Monte Carlo simulation 91 4.5.2 The real-world data simulation 92 4.6 Empirical results 94 4.6.1 The Monte Carlo simulation results 94 4.6.2 The real-world data simulation results 99 Chapter 5 Portfolio insurance strategy in the cryptocurrency market 108 5.1 Chapter overview 108 5.2 Portfolio insurance strategies 123 5.2.1 SL strategy 123 5.2.2 CPPI strategy 124 5.2.3 TIPP strategy 126 5.2.4 VBPI strategy 127 5.3 Downside risks 130 5.3.1 MDD and AvDD 130 5.3.2 VaR 132 5.3.3 ES 133 5.3.4 Semideviation 133 5.3.5 Omega ratio 134 5.4 Investorโ€™s utility 136 5.4.1 Expected utility theory 136 5.4.2 Prospect theory 138 5.5 Data and experimental design 140 5.5.1 Data 140 5.5.2 Experimental design 143 5.6 Empirical results 147 5.6.1 Downside risk results 147 5.6.2 Investorโ€™s utility results 159 Chapter 6 Conclusion 167 6.1 Summary and contributions 167 6.2 Future work 178 Bibliography 180 Appendices 218 A Appendix to Chapter 3 218 B Appendix to Chapter 4 220 C Appendix to Chapter 5 220 ๊ตญ๋ฌธ์ดˆ๋ก 228๋ฐ•

    Correlation between capital markets and cryptocurrency: impact of the coronavirus

    Get PDF
    The objective of the study is to use daily Thai data analysis to strengthen correlations between Bitcoin and conventional asset measurements. The most popular asset prices and indices include gold, oil, the SET50 index, Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Ripple (XRP), Dashcoin (DASH), Stellar Lumens (XLM), Binance coin (BNB), and Dogecoin (DOGE). We find a significant correlation between cryptocurrencies and the digital economy using a matrix approach to the Pearson correlation coefficient. With the help of a minimal spanning tree model and random matrix theory, we can determine the shortest route between assets. Yet, as predicted, only a small percentage of the greatest eigenvalues diverge. We are also developing a novel technique to find the SET-50 index. In an investment portfolio during the coronavirus period, alternatives to the gold price and the DOGE may offer possibilities for risk diversification
    • โ€ฆ
    corecore