871 research outputs found

    Bitcoin mining as a contest

    Get PDF
    This paper presents a simple game theoretic framework, assuming complete information, to model Bitcoin mining activity. It does so by formalizing the activity as an all-pay contest: a competition where participants contend with each other to win a prize by investing in computational power, and victory is probabilistic. With at least two active miners, the unique pure strategy Nash equilibrium of the game suggests the following interesting insights on the motivation for being a miner: while the optimal amount of energy consumption depends also on the reward for solving the puzzle, as long as the reward is positive the decision to be an active miner depends only on the mining costs. Moreover, the intrinsic structure of the mining activity seems to prevent the formation of a monopoly, because in an equilibrium with two miners, both of them will have positive expected profits for any level of the opponent's costs. A monopoly could only form if the rate of return on investment were higher outside bitcoin

    Bitcoin Mining as a Contest

    Get PDF

    Questions related to Bitcoin and other Informational Money

    Get PDF
    A collection of questions about Bitcoin and its hypothetical relatives Bitguilder and Bitpenny is formulated. These questions concern technical issues about protocols, security issues, issues about the formalizations of informational monies in various contexts, and issues about forms of use and misuse. Some questions are formulated in the more general setting of informational monies and near-monies. We also formulate questions about legal, psychological, and ethical aspects of informational money. Finally we formulate a number of questions concerning the economical merits of and outlooks for Bitcoin.Comment: 31 pages. In v2 the section on patterns for use and misuse has been improved and expanded with so-called contaminations. Other small improvements were made and 13 additional references have been include

    Bitcoin: An Impossibility Theorem for Proof-of-Work based Protocols

    Get PDF
    Bitcoin’s main innovation lies in allowing a decentralized system that relies on anonymous, profit driven miners who can freely join the system. We formalize these properties in three axioms: anonymity of miners, no incentives for miners to consolidate, and no incentive to assuming multiple fake identities. This novel axiomatic formalization allows us to characterize which other protocols are feasible: Every protocol with these properties must have the same reward scheme as Bitcoin. This implies an impossibility result for risk-averse miners: no protocol satisfies the aforementioned constraints simultaneously without giving miners a strict incentive to merge. Furthermore, any protocol either gives up on some degree of decentralization or its reward scheme is equivalent to Bitcoin’s
    corecore