51,442 research outputs found

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    LVDS Serial AER Link performance

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The event information is transferred using a high speed digital parallel bus (typically 16 bits and 20ns-40ns per event). This paper presents a testing platform for AER systems that allows analysing a LVDS Serial AER link produced by a Spartan 3 FPGA, or by a commercial LVDS transceiver. The interface allows up to 0.728 Gbps (~40Mev/s, 16 bits/ev). The eye diagram ensures that the platform could support 1.2 Gbps.Commission of the European Communities IST-2001-34124 (CAVIAR)ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC-2003-08164-C03-0

    Effective Monte Carlo simulation on System-V massively parallel associative string processing architecture

    Get PDF
    We show that the latest version of massively parallel processing associative string processing architecture (System-V) is applicable for fast Monte Carlo simulation if an effective on-processor random number generator is implemented. Our lagged Fibonacci generator can produce 10810^8 random numbers on a processor string of 12K PE-s. The time dependent Monte Carlo algorithm of the one-dimensional non-equilibrium kinetic Ising model performs 80 faster than the corresponding serial algorithm on a 300 MHz UltraSparc.Comment: 8 pages, 9 color ps figures embedde

    A LVDS Serial AER Link

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The event information is transferred using a high speed digital parallel bus (typically 16 bits and 20ns-40ns per event). This paper presents a testing platform for AER systems that allows to analyse a LVDS Serial AER link. The interface allows up to 0.7 Gbps (~40Mev/s, 16 bits/ev). The eye diagram ensures that the platform could support 1.2 Gbps.Commission of the European Communities IST-2001-34124 (CAVIAR)ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC-2003-08164-C03-0

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link¼ cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Development of a real-time full-field range imaging system

    Get PDF
    This article describes the development of a full-field range imaging system employing a high frequency amplitude modulated light source and image sensor. Depth images are produced at video frame rates in which each pixel in the image represents distance from the sensor to objects in the scene. The various hardware subsystems are described as are the details about the firmware and software implementation for processing the images in real-time. The system is flexible in that precision can be traded off for decreased acquisition time. Results are reported to illustrate this versatility for both high-speed (reduced precision) and high-precision operating modes

    Implementation of JPEG compression and motion estimation on FPGA hardware

    Full text link
    A hardware implementation of JPEG allows for real-time compression in data intensivve applications, such as high speed scanning, medical imaging and satellite image transmission. Implementation options include dedicated DSP or media processors, FPGA boards, and ASICs. Factors that affect the choice of platform selection involve cost, speed, memory, size, power consumption, and case of reconfiguration. The proposed hardware solution is based on a Very high speed integrated circuit Hardware Description Language (VHDL) implememtation of the codec with prefered realization using an FPGA board due to speed, cost and flexibility factors; The VHDL language is commonly used to model hardware impletations from a top down perspective. The VHDL code may be simulated to correct mistakes and subsequently synthesized into hardware using a synthesis tool, such as the xilinx ise suite. The same VHDL code may be synthesized into a number of sifferent hardware architetcures based on constraints given. For example speed was the major constraint when synthesizing the pipeline of jpeg encoding and decoding, while chip area and power consumption were primary constraints when synthesizing the on-die memory because of large area. Thus, there is a trade off between area and speed in logic synthesis

    Hardware for digitally controlled scanned probe microscopes

    Get PDF
    The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 ”m in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the microscope control system an insignificant factor for most experiments. The adaptation of the system to various types of SPM experiments is discussed. Advances in audio electronics and digital signal processors have made the construction of such high performance systems possible at low cost

    Charge-coupled device data processor for an airborne imaging radar system

    Get PDF
    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems
    • 

    corecore