10,575 research outputs found

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity

    VHF command system study

    Get PDF
    Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    Performance and Detection of M-ary Frequency Shift Keying in Triple Layer Wireless Sensor Network

    Full text link
    This paper proposes an innovative triple layer Wireless Sensor Network (WSN) system, which monitors M-ary events like temperature, pressure, humidity, etc. with the help of geographically distributed sensors. The sensors convey signals to the fusion centre using M-ary Frequency Shift Keying (MFSK)modulation scheme over independent Rayleigh fading channels. At the fusion centre, detection takes place with the help of Selection Combining (SC) diversity scheme, which assures a simple and economical receiver circuitry. With the aid of various simulations, the performance and efficacy of the system has been analyzed by varying modulation levels, number of local sensors and probability of correct detection by the sensors. The study endeavors to prove that triple layer WSN system is an economical and dependable system capable of correct detection of M-ary events by integrating frequency diversity together with antenna diversity.Comment: 13 pages; International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.4, July 201

    Principles of Transmission and Detection of Digital Signals

    Get PDF

    Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel

    Get PDF
    An expression for the bit error rate of a multiple subcarrier intensity-modulated atmospheric optical communication system employing spatial diversity is derived. Spatial diversity is used to mitigate scintillation caused by atmospheric turbulence, which is assumed to obey lognormal distribution. Optimal but complex maximum ratio, equal gain combining (EGC) and relatively simple selection combining spatial diversity techniques in a clear atmosphere are considered. Each subcarrier is modulated using binary phase shift keying. Laser irradiance is subsequently modulated by a subcarrier signal, and a direct detection PIN receiver is employed (i.e. intensity modulation/direction detection). At a subcarrier level, coherent demodulation is used to extract the transmitted data/information. The performance of on–off-keying is also presented and compared with the subcarrier intensity modulation under the same atmospheric conditions

    Collaborative spectrum sensing optimisation algorithms for cognitive radio networks

    Get PDF
    The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to minimise the interference to licensed communications. Hence, spectrum sensing is a most important requirement of a cognitive radio. However, due to the channel uncertainties, local observations are not reliable and collaboration among users is required. Selection of fusion rule at a common receiver has a direct impact on the overall spectrum sensing performance. In this paper, optimisation of collaborative spectrum sensing in terms of optimum decision fusion is studied for hard and soft decision combining. It is concluded that for optimum fusion, the fusion centre must incorporate signal-to-noise ratio values of cognitive users and the channel conditions. A genetic algorithm-based weighted optimisation strategy is presented for the case of soft decision combining. Numerical results show that the proposed optimised collaborative spectrum sensing schemes give better spectrum sensing performance

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Performance evaluation for communication systems with receive diversity and interference

    Get PDF
    Optimum combining (OC) is a well-known coherent detection technique used to combat fading and suppress cochannel interference. In this dissertation, expressions are developed to evaluate the error probability of OC for systems with multiple interferers and multiple receiving branches. Three approaches are taken to derive the expressions. The first one starts from the decision metrics of OC. It facilitates obtaining closed-form expressions for binary phase-shift keying modulation. The second approach utilizes the moment generating function of the output signal to interference plus noise ratio (SINR) and results in expressions for symbol and bit error probability for multiple phaseshift keying modulation. The third method uses the probability density function of the output SINR and arrives at expressions of symbol error probability for systems where the interferers may have unequal power levels. Throughout the derivation, it is assumed that the channels are independent Rayleigh fading channels. With these expressions, evaluating the error probability of OC is fast, easy and accurate. Two noncoherent detection schemes based on the multiple symbol differential detection (MSDD) technique are also developed for systems with multiple interferers and multiple receiving branches. The first MSDD scheme is developed for systems where the channel gain of the desired signal is unknown to the receiver, but the covariance matrix of the interference plus noise is known. The maximum-likelihood decision statistic is derived for the detector. The performance of MSDD is demonstrated by analysis and simulation. A sub-optimum decision feedback algorithm is presented to reduce the computation complexity of the MSDD decision statistic. This suboptimum algorithm achieves performance that is very close to that of the optimum algorithm. It can be shown that with an increasing observation interval, the performance of this kind of MSDD approaches that of OC with differential encoding. The second MSDD scheme is developed for the case in which the only required channel information is the channel gain of the interference. It is shown that when the interference power level is high, this MSDD technique can achieve good performance
    • 

    corecore