314 research outputs found

    Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing Architecture

    Get PDF
    AbstractIn this paper we present the practical implementation of a high-speed polyphase sampling and demultiplexing architecture for optoelectronics analog-to-digital converters (OADCs). The architecture consists of a one-stage divide-by-eight decimator circuit where optically-triggered samplers are cascaded to sample an analog input signal, and demultiplex different phases of the sampled signal to yield low data rate for electronic quantization. Electrical-in to electrical-out data format is maintained through the sampling, demultiplexing and quantization processes of the architecture thereby avoiding the need for electrical-to-optical and optical-to-electrical signal conversions. We experimentally demonstrate a 10.24 giga samples per second (GS/s), 12-bit resolution OADC system comprising the optically-triggered sampling circuits integrated with commercial electronic quantizers. Measurements performed on the OADC yielded an effective bit resolution (ENOB) of 10.3 bits, spurious free dynamic range (SFDR) of -32 dB and signal-to-noise and distortion ratio (SNDR) of 63.7 dB

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    System demonstration of an optically-sampled, wavelength-demultiplexed photonic analog-to-digital converter

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 84-86).The performance of electronic analog-to-digital converters (ADCs) at high sampling rates is fundamentally limited by the timing jitter of electronic clocks. To circumvent this limitation, one method is to exploit the orders-of-magnitude lower timing jitter of mode-locked lasers and implement optical sampling as a front-end for electronic ADCs. The optical-sampling, wavelength-demultiplexing approach to A/D conversion, which is explored in this thesis, offers key benefits such as ease of scalability to higher aggregate sampling rates via passive wavelength-division demultiplexing (WDM) filters and potential for full integration via silicon photonics platform for chip-scale signal processing applications. This thesis will first cover the design issues for each stage in the optically-sampled, wavelength-demultiplexed photonic ADC architecture, followed by experimental results from two system demonstrations. Digitization of a 41-GHz signal with 7.0 effective bits at a sampling rate of 2 GSa/s was demonstrated with a discrete-component photonic ADC, which corresponds to 15 fs of jitter, a 4-5 times improvement over state-of-the-art electronic ADCs. On the way towards an integrated photonic ADC, a silicon chip with core photonic components was fabricated and used to digitize a 10-GHz signal with 3.5 effective bits. Drop-port transmission measurements of an integrated 20-channel WDM filter bank are included to show potential for high sampling rate operation with 10 effective bits.by Michael Yung Peng.S.M

    A Jittered-Sampling Correction Technique for ADCs

    Full text link

    Photonic Technologies for Radar and Telecomunications Systems

    Get PDF
    The growing interest in flexible architectures radio and the recent progress in the high speed digital signal processor make a software defined radio system an enabling technology for several digital signals processing architecture and for the flexible signal generation. In this direction wireless radar\telecommunications receiver with digital backend as close as possible to the antenna, as well as the software defined signal generation, reaches several benefits in term of reconfigurabilty, reliability and cost with respect to the analogical front-ends. Unfortunately the present scenario ensures direct sampling and digital downconversion only at the intermediate frequency. Therefore these kinds of systems are quite vulnerable to mismatches and hardware non-idealities in particular due to the mixers stages and filtering process. Furthermore, since the limited input bandwidth, speed and precision of the analog to digital converters represent the main digital system‘s bottleneck, today‘s direct radio frequency sampling is only possible at low frequency. On the other hand software defined signals can be generated exploiting direct digital synthesizers followed by an up-conversion to the desired carrier frequency. State-of-the-art synthesizers (limited to few GHz) introduce quantization errors due to digital-to-analog conversion, and phase errors depending on the phase stability of their internal clock. In addition the high phase stability required in modern wireless systems (such as radar systems) is becoming challenging for the electronic RF signal generation, since at high carrier frequency the frequency multiplication processes that are usually exploited reduce the phase stability of the original RF oscillators. Over the past 30 years microwave photonics (MWP) has been defined as the field that study the interactions between microwave and optical waves and their applications in radar and communications system as well as in hybrid sensor‘s instrumentation. As said before software defined radio applications drive the technological development trough high speed\bandwidth and high dynamic range systems operating directly in the radio frequency domain. Nowadays, while digital electronics represent a limit on system performances, photonic technologies perfectly engages the today‘s system needs and offers promising solution thanks to its inherent high frequency and ultrawide bandwidth. Moreover photonic components with very high phase coherence guarantees highly stable microwave carriers; while strong immunity to the electromagnetic interference, low loss and high tunability make a MWP system robust, flexible and reliable. Historical research and development of MWP finds space in a wide range of applications including the generation, distribution and processing of radio frequency signals such as, for example, analog microwave photonic link, antenna remoting, high frequency and low noise photonic microwave signal generation, photonic microwave signal processing (true time delay for phased array systems, tunable high Q microwave photonic filter and high speed analog to digital converters) and broadband wireless access networks. Performances improvement of photonic and hybrid devices represents a key factor to improve the development of microwave photonic systems in many other applications such as Terahertz generation, optical packet switching and so on. Furthermore, advanced in silicon photonics and integration, makes the low cost complete microwave photonic system on chip just around the corner. In the last years the use of photonics has been suggested as an effective way for generating low phase-noise radio frequency carriers even at high frequency. However while a lot of efforts have been spent in the photonic generation of RF carriers, only few works have been presented on reconfigurable phase coding in the photonics-based signal generators. In this direction two innovative schemes for optically generate multifrequency direct RF phase modulated signals have been presented. Then we propose a wideband ADC with high precision and a photonic wireless receiver for sparse sensing. This dissertation focuses on microwave photonics for radar and telecommunications systems. In particular applications in the field of photonic RF signal generation, photonic analog to digital converters and photonic ultrawideband radio will be presented with the main objective to overcome the limitations of pure electrical systems. Schemes and results will be further detailed and discussed. The dissertation is organized as follows. In the first chapter an overview of the MWP technologies is presented, focusing the attention of the limits overcame by using hybrid optoelectronic systems in particular field of applications. Then optoelectronic devices are introduced in the second chapter to better understand their role in a MWP system. Chapters 3,4, and 5 present results on photonic microwave signal generation, photonic wideband analog to digital converters and photonic ultrawideband up\down converter for both radar and telecommunications applications. Finally in the chapter 6 an overview of the photonic radar prototype is given

    Analog to digital conversion in beam instrumentation systems

    Full text link
    Analog to digital conversion is a very important part of almost all beam instrumentation systems. Ideally, in a properly designed system, the used analog to digital converter (ADC) should not limit the system performance. However, despite recent improvements in ADC technology, quite often this is not possible and the choice of the ADC influences significantly or even restricts the system performance. It is therefore very important to estimate the requirements for the analog to digital conversion at an early stage of the system design and evaluate whether one can find an adequate ADC fulfilling the system specification. In case of beam instrumentation systems requiring both, high time and amplitude resolution, it often happens that the system specification cannot be met with the available ADCs without applying special processing to the analog signals prior to their digitisation. In such cases the requirements for the ADC even influence the system architecture. This paper aims at helping the designer of a beam instrumentation system in the process of selecting an ADC, which in many cases is iterative, requiring a trade off between system performance, complexity and cost. Analog to digital conversion is widely and well described in the literature, therefore this paper focusses mostly on aspects related to beam instrumentation. The ADC fundamentals are limited to the content presented as an introduction during the CAS one-hour lecture corresponding to this paper.Comment: 36 pages, contribution to the CAS - CERN Accelerator School: Beam Instrumentation, 2-15 June 2018, Tuusula, Finlan

    Radio beam steering in indoor fibre-wireless networks

    Get PDF
    • …
    corecore