1,106 research outputs found

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(logn)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(logΔ+loglogn)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(loglogn)\Omega(\log \log n) bits per register also holds for leader election

    Communication cost of consensus for nodes with limited memory

    Full text link
    Motivated by applications in blockchains and sensor networks, we consider a model of nn nodes trying to reach consensus on their majority bit. Each node ii is assigned a bit at time zero, and is a finite automaton with mm bits of memory (i.e., 2m2^m states) and a Poisson clock. When the clock of ii rings, ii can choose to communicate, and is then matched to a uniformly chosen node jj. The nodes jj and ii may update their states based on the state of the other node. Previous work has focused on minimizing the time to consensus and the probability of error, while our goal is minimizing the number of communications. We show that when m>3logloglog(n)m>3 \log\log\log(n), consensus can be reached at linear communication cost, but this is impossible if m<logloglog(n)m<\log\log\log(n). We also study a synchronous variant of the model, where our upper and lower bounds on mm for achieving linear communication cost are 2logloglog(n)2\log\log\log(n) and logloglog(n)\log\log\log(n), respectively. A key step is to distinguish when nodes can become aware of knowing the majority bit and stop communicating. We show that this is impossible if their memory is too low.Comment: 62 pages, 5 figure

    Leader election in synchronous networks

    Get PDF
    Worst, best and average number of messages and running time of leader election algorithms of different distributed systems are analyzed. Among others the known characterizations of the expected number of messages for LCR algorithm and of the worst number of messages of Hirschberg-Sinclair algorithm are improve
    corecore