196 research outputs found

    FPGA implementation of a frame delay

    Get PDF
    The objective of this thesis is to investigate the applicability of Field Programmable Gate Arrays (FPGAs) for frame delay implementation. FPGAs are programmable devices that can be directly configured by the end user without the use of an integrated circuit fabrication facility. They offer the designer the benefits of custom hardware, eliminating high development costs and manufacturing time. Frame delays are easier to realize using R/W memory where data is written into the memory and read out for each frame. FPGAs are used in a Quartus II environment as it is easy to perform frame delay implementation using schematic entry procedure. Since FPGAs use look-up tables as configurable logic blocks, they are considered as an appropriate choice for frame delay based designs

    FPGA Implementation of Higher Order FIR Filter

    Get PDF
    The digital Finite-Impulse-Response (FIR) filters are mainly employed in digital signal processing applications. The main components of digital FIR filters designed on FPGAs are the register bank to save the samples of signals, adder to implement sum operations and multiplier for multiplication of filter coefficients to signal samples. Although, design and implementation of digital FIR filters seem simple but the design bottleneck is multiplier block for speed, power consumption and FPGA chip area occupation. The multipliers are an integral part in FIR structures and these use a large part of the chip area. This limits the number of processing elements (PE) available on the chip to realize a higher order of filter. A model is developed in the Matlab/Simulink environment to investigate the performance of the desired higher order FIR filter. An equivalent FIR filter representation is designed by the Xilinx FIR Compiler by using the exported FIR filter coefficients. The Xilinx implementation flow is completed with the help of Xilinx ISE 14.5. It is observed how the use of higher order FIR filter impacts the resource utilization of the FPGA and it’s the maximum operating frequency

    Digital Architectures for UWB Beamforming Using 2D IIR Spatio-Temporal Frequency-Planar Filters

    Get PDF
    A design method and an FPGA-based prototype implementation of massively parallel systolic-array VLSI architectures for 2nd-order and 3rd-order frequency-planar beam plane-wave filters are proposed. Frequency-planar beamforming enables highly-directional UWB RF beams at low computational complexity compared to digital phased-array feed techniques. The array factors of the proposed realizations are simulated and both high-directional selectivity and UWB performance are demonstrated. The proposed architectures operate using 2's complement finite precision digital arithmetic. The real-time throughput is maximized using look-ahead optimization applied locally to each processor in the proposed massively-parallel realization of the filter. From sensitivity theory, it is shown that 15 and 19-bit precision for filter coefficients results in better than 3% error for 2nd- and 3rd-order beam filters. Folding together with Ktimes multiplexing is applied to the proposed beam architectures such that throughput can be traded for K-fold lower complexity for realizing the 2-D fan filter banks. Prototype FPGA circuit implementations of these filters are proposed using a Virtex 6 xc6vsx475t-2ff1759 device. The FPGA-prototyped architectures are evaluated using area (A), critical path delay (T), and metrics AT and AT2. The L2 error energy is used as a metric for evaluating fixed-point noise levels and the accuracy of the finite precision digital arithmetic circuits

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Design of software radio

    Get PDF
    Software Define Radio (SDR) has become a prevalent technology in wireless systems. In SDR some or all of the signal specific handling is implemented in software functions, while other functions like decimation, interpolation, digital up-conversion and digital down conversion are done on reprogrammable Digital Signal Processor or Field Programmable Gate Arrays.Twelve laboratory exercises have been designed to lead the student through the process of using the Universal Software Radio peripheral (USRP) hardware and GNU Radio open source software

    Design of software radio

    Get PDF
    Software Define Radio (SDR) has become a prevalent technology in wireless systems. In SDR some or all of the signal specific handling is implemented in software functions, while other functions like decimation, interpolation, digital up-conversion and digital down conversion are done on reprogrammable Digital Signal Processor or Field Programmable Gate Arrays.Twelve laboratory exercises have been designed to lead the student through the process of using the Universal Software Radio peripheral (USRP) hardware and GNU Radio open source software

    Design and implementation of DA FIR filter for bio-inspired computing architecture

    Get PDF
    This paper elucidates the system construct of DA-FIR filter optimized for design of distributed arithmetic (DA) finite impulse response (FIR) filter and is based on architecture with tightly coupled co-processor based data processing units. With a series of look-up-table (LUT) accesses in order to emulate multiply and accumulate operations the constructed DA based FIR filter is implemented on FPGA. The very high speed integrated circuit hardware description language (VHDL) is used implement the proposed filter and the design is verified using simulation. This paper discusses two optimization algorithms and resulting optimizations are incorporated into LUT layer and architecture extractions. The proposed method offers an optimized design in the form of offers average miminimizations of the number of LUT, reduction in populated slices and gate minimization for DA-finite impulse response filter. This research paves a direction towards development of bio inspired computing architectures developed without logically intensive operations, obtaining the desired specifications with respect to performance, timing, and reliability

    High sample-rate Givens rotations for recursive least squares

    Get PDF
    The design of an application-specific integrated circuit of a parallel array processor is considered for recursive least squares by QR decomposition using Givens rotations, applicable in adaptive filtering and beamforming applications. Emphasis is on high sample-rate operation, which, for this recursive algorithm, means that the time to perform arithmetic operations is critical. The algorithm, architecture and arithmetic are considered in a single integrated design procedure to achieve optimum results. A realisation approach using standard arithmetic operators, add, multiply and divide is adopted. The design of high-throughput operators with low delay is addressed for fixed- and floating-point number formats, and the application of redundant arithmetic considered. New redundant multiplier architectures are presented enabling reductions in area of up to 25%, whilst maintaining low delay. A technique is presented enabling the use of a conventional tree multiplier in recursive applications, allowing savings in area and delay. Two new divider architectures are presented showing benefits compared with the radix-2 modified SRT algorithm. Givens rotation algorithms are examined to determine their suitability for VLSI implementation. A novel algorithm, based on the Squared Givens Rotation (SGR) algorithm, is developed enabling the sample-rate to be increased by a factor of approximately 6 and offering area reductions up to a factor of 2 over previous approaches. An estimated sample-rate of 136 MHz could be achieved using a standard cell approach and O.35pm CMOS technology. The enhanced SGR algorithm has been compared with a CORDIC approach and shown to benefit by a factor of 3 in area and over 11 in sample-rate. When compared with a recent implementation on a parallel array of general purpose (GP) DSP chips, it is estimated that a single application specific chip could offer up to 1,500 times the computation obtained from a single OP DSP chip
    • …
    corecore