196 research outputs found

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    The Novel PAPR Reduction Schemes for O‐OFDM‐Based Visible Light Communications

    Get PDF
    In this chapter, we propose two novel peak-to-average power ratio (PAPR) reduction schemes for the asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) scheme used in the visible light communications (VLC) system. In the first scheme, we implement the Toeplitz matrix based Gaussian blur method to reduce the high PAPR of ACO-OFDM at the transmitter and use the orthogonal matching pursuit algorithm to recover the original ACO-OFDM frame at the receiver. Simulation results show that for the 256-subcarrier ACO-OFDM system a ~6 dB improvement in PAPR is achieved compared with the original ACO-OFDM in terms of the complementary cumulative distribution function (CCDF), while maintaining a competitive bit-error rate performance compared with the ideal ACO-OFDM lower bound. In the second scheme, we propose an improved hybrid optical orthogonal frequency division multiplexing (O-OFDM) and pulse-width modulation (PWM) scheme to reduce the PAPR for ACO-OFDM. The bipolar O-OFDM signal without negative clipping is converted into a PWM format where the leading and trailing edges carry the frame synchronization and modulated information, respectively. The simulation and experimental results demonstrate that the proposed OFDM-PWM scheme offers a significant PAPR reduction compared to the ACO-OFDM with an improved bit error rate

    A joint OFDM PAPR reduction and data decoding scheme with no SI estimation

    Get PDF
    The need for side information (SI) estimation poses a major challenge when selected mapping (SLM) is implemented to reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Recent studies on pilot-assisted SI estimation procedures suggest that it is possible to determine the SI without the need for SI transmission. However, SI estimation adds to computational complexity and implementation challenges of practical SLM-OFDM receivers. To address these technical issues, this paper presents the use of a pilot-assisted cluster-based phase modulation and demodulation procedure called embedded coded modulation (ECM). The ECM technique uses a slightly modified SLM approach to reduce PAPR and to enable data recovery with no SI transmission and no SI estimation. In the presence of some non-linear amplifier distortion, it is shown that the ECM method achieves similar data decoding performance as conventional SLM-OFDM receiver that assumed a perfectly known SI and when the SI is estimated using a frequency-domain correlation approach. However, when the number of OFDM subcarriers is small and due to the clustering in ECM, the modified SLM produces a smaller PAPR reduction gain compared with conventional SLM

    A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems

    Get PDF
    The peak to average power ratio (PAPR) is one of the major problem with multicarrier-based systems. Due to its improved spectral efficiency and decreased PAPR, Filter Bank Multicarrier (FBMC) has recently become an effective alternative to the orthogonal multiplexing division (OFDM). For filter bank multicarrier communication/offset quadrature amplitude modulation-Visible light communication (FBMC/OQAM-VLC) systems is proposed a PAPR reduction technique. The suggested approach overlaps the proposed FBMC/OQAM-based VLC data signal with the existing signals. Non-redundant signals and data signals do not overlap in the frequency domain because data signals are scattered on odd subcarriers whereas built signals use even subcarriers. To reduce the effects of large-amplitude signal reduction, the suggested technique converts negative signals into positive signals rather than clipping them off as in conventional FBMC-based VLC systems. The PAPR reduction and bit error rate (BER) are realized using a scaling factor in the transformed signals. Complementary cumulative distribution function(CCDF) and BER are used to calculate the performance of the proposed approach. The presented study found that FBMC/OQAM-VLC systems to achieve a good trade-off between PAPR reduction and BER

    A Review on PAPR Reduction in Perspective of BER Performance in MIMO-OFDM Based Next Generation Wireless Systems.

    Get PDF
    Today, high speed and trustworthy wireless communication over mobile is the requirement of society. As the mobile applications and the users are rapidly increasing, it is obligatory to have more reliable, high speed wireless network with high throughput, which will combat the disadvantages in existing system in this multiuser environment. In wireless system the received signal may be corrupted due to noise and interferences such as ‘inter symbol interference’ and ‘inter carrier interference’ when subjected to multi-path fading. Also the performance the system may be affected due to poor ‘bit error rate’ and high ‘peak to average power ratio’ value, which further affect the signal power and spectral efficiency of transmitted signal. The blend of ‘orthogonal frequency division multiplexing’ and ‘multi input multi output’ antenna system referred as MIMO-OFDM system, which offers the improvement in quality of service and higher throughput to satisfy the tomorrow’s need. This review article mainly focuses on various technologies adopted by different researchers for enhancing the ‘bit error rates’, ‘peak to average power ratio’, ‘signal to noise ratio’ and ‘spectral efficiency’ performances in wireless systems. We continue by highlighting the limitations and comparing results of conventional methods, schemes and algorithms proposed by different researchers.  We also focus on the multiple antenna system (MIMO), which is designed for future multiuser environment to enhance the capacity or to have high throughput along with good quality services

    Waveforms and channel coding for 5G

    Get PDF
    Abstract. The fifth generation (5G) communication systems are required to perform significantly better than the existing fourth generation (4G) systems in data rate, capacity, coverage, latency, energy consumption and cost. Hence, 5G needs to achieve considerable enhancements in the areas of bandwidth, spectral, energy, and signaling efficiencies and cost per bit. The new radio access technology (RAT) of 5G physical layer needs to utilize an efficient waveform to meet the demands of 5G. Orthogonal frequency division multiplexing (OFDM) is considered as a baseline for up to 30 GHz. However, a major drawback of OFDM systems is their large peak to average power ratio (PAPR). Here in this thesis, a simple selective-mapping (SLM) technique using scrambling is proposed to reduce the PAPR of OFDM signals. This technique selects symbol sequences with high PAPR and scrambles them until a PAPR sequence below a specific threshold is generated. The computational complexity of the proposed scheme is considerably lower than that of the traditional SLM. Also, performance of the system is investigated through simulations and more than 4.5 dB PAPR reduction is achieved. In addition, performance of single carrier waveforms is analyzed in multiple-input multiple-output (MIMO) systems as an alternative to OFDM. Performance of a single carrier massive MIMO system is presented for both uplink and downlink with single user and multiple user cases and the effect of pre-coding on the PAPR is studied. A variety of channel configurations were investigated such as correlated channels, practical channels and the channels with errors in channel estimate. Furthermore, the candidate coding schemes are investigated for the new RAT in the 5G standard corresponding the activities in the third generation partnership project (3GPP). The schemes are evaluated in terms of block error rate (BLER), bit error rate (BER), computational complexity, and flexibility. These parameters comprise a suitable set to assess the performance of different services and applications. Turbo, low density parity check (LDPC), and polar codes are considered as the candidate schemes. These are investigated in terms of obtaining suitable rates, block lengths by proper design for a fair comparison. The simulations have been carried out in order to obtain BLER / BER performance for various code rates and block lengths, in additive white Gaussian noise (AWGN) channel. Although polar codes perform well at short block lengths, LDPC has a relatively good performance at all the block lengths and code rates. In addition, complexity of the LDPC codes is relatively low. Furthermore, BLER/BER performances of the coding schemes in Rayleigh fading channels are investigated and found that the fading channel performance follows a similar trend as the performance in the AWGN channel

    PAPR Analysis in OFDM-IQ-IM Systems

    Get PDF
    One of the key disadvantages of OFDM system, implemented already in 4G and 5G is high PAPR. For this reason, it is very important to evaluate the PAPR performance of any potential multiplexing technique candidate for upcoming generations. Due to the superior performance over OFDM considering BER performance, spectral efficiency, energy efficiency, OFDM-IQ-IM is one of the promising multiplexing techniques for upcoming generations of wireless technology. Therefore, the PAPR performance of OFDM-IQ-IM system has been analysed here. In deterministic approach, subcarriers are considered to be modulated by symbols with highest power and the upper limit of the PAPR of OFDM-IQ-IM system has been formulated. Using statistical distribution, a probabilistic approach has been taken to determine the PAPR performance of the OFDM-IQ-IM and OFDM-IM systems. The distribution of PAPR of OFDM-IQ-IM and OFDM-IM systems has been evaluated considering the discrete time baseband signals for both in-phase and quadrature components as independent Gaussian random variables. A comparative analysis of the PAPR of OFDM, OFDM-IM and OFDM-IQ-IM systems has been made in both deterministic and probabilistic approach. Thus improved PAPR performance has been noticed in OFDM-IQ-IM system compared to OFDM-IM and OFDM systems for same spectral efficiency

    OFDM-PWM scheme for visible light communications

    Get PDF
    In this paper, we propose an improved hybrid optical orthogonal frequency division multiplexing (O-OFDM) and pulse-width modulation (PWM) scheme for visible light communications. In this scheme, a bipolar O-OFDM signal is converted into a PWM format where the leading and trailing edges convey the frame synchronization and modulated information, respectively. The proposed scheme is insensitive to the non-linearity of the light emitting diode (LED) as LEDs are switched ‘on’ and ‘off’ between two points. Therefore, the tight requirement on the high peak-to-average-power-ratio (PAPR) in O-OFDM is no longer a major issue. The simulation and experimental results demonstrate that the proposed scheme offers an improved bit error rate performance compared to the traditional asymmetrically clipped O-OFDM (ACO-OFDM)
    • 

    corecore