34 research outputs found

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    High efficiency block coding techniques for image data.

    Get PDF
    by Lo Kwok-tung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1992.Includes bibliographical references.ABSTRACT --- p.iACKNOWLEDGEMENTS --- p.iiiLIST OF PRINCIPLE SYMBOLS AND ABBREVIATIONS --- p.ivLIST OF FIGURES --- p.viiLIST OF TABLES --- p.ixTABLE OF CONTENTS --- p.xChapter CHAPTER 1 --- IntroductionChapter 1.1 --- Background - The Need for Image Compression --- p.1-1Chapter 1.2 --- Image Compression - An Overview --- p.1-2Chapter 1.2.1 --- Predictive Coding - DPCM --- p.1-3Chapter 1.2.2 --- Sub-band Coding --- p.1-5Chapter 1.2.3 --- Transform Coding --- p.1-6Chapter 1.2.4 --- Vector Quantization --- p.1-8Chapter 1.2.5 --- Block Truncation Coding --- p.1-10Chapter 1.3 --- Block Based Image Coding Techniques --- p.1-11Chapter 1.4 --- Goal of the Work --- p.1-13Chapter 1.5 --- Organization of the Thesis --- p.1-14Chapter CHAPTER 2 --- Block-Based Image Coding TechniquesChapter 2.1 --- Statistical Model of Image --- p.2-1Chapter 2.1.1 --- One-Dimensional Model --- p.2-1Chapter 2.1.2 --- Two-Dimensional Model --- p.2-2Chapter 2.2 --- Image Fidelity Criteria --- p.2-3Chapter 2.2.1 --- Objective Fidelity --- p.2-3Chapter 2.2.2 --- Subjective Fidelity --- p.2-5Chapter 2.3 --- Transform Coding Theroy --- p.2-6Chapter 2.3.1 --- Transformation --- p.2-6Chapter 2.3.2 --- Quantization --- p.2-10Chapter 2.3.3 --- Coding --- p.2-12Chapter 2.3.4 --- JPEG International Standard --- p.2-14Chapter 2.4 --- Vector Quantization Theory --- p.2-18Chapter 2.4.1 --- Codebook Design and the LBG Clustering Algorithm --- p.2-20Chapter 2.5 --- Block Truncation Coding Theory --- p.2-22Chapter 2.5.1 --- Optimal MSE Block Truncation Coding --- p.2-24Chapter CHAPTER 3 --- Development of New Orthogonal TransformsChapter 3.1 --- Introduction --- p.3-1Chapter 3.2 --- Weighted Cosine Transform --- p.3-4Chapter 3.2.1 --- Development of the WCT --- p.3-6Chapter 3.2.2 --- Determination of a and β --- p.3-9Chapter 3.3 --- Simplified Cosine Transform --- p.3-10Chapter 3.3.1 --- Development of the SCT --- p.3-11Chapter 3.4 --- Fast Computational Algorithms --- p.3-14Chapter 3.4.1 --- Weighted Cosine Transform --- p.3-14Chapter 3.4.2 --- Simplified Cosine Transform --- p.3-18Chapter 3.4.3 --- Computational Requirement --- p.3-19Chapter 3.5 --- Performance Evaluation --- p.3-21Chapter 3.5.1 --- Evaluation using Statistical Model --- p.3-21Chapter 3.5.2 --- Evaluation using Real Images --- p.3-28Chapter 3.6 --- Concluding Remarks --- p.3-31Chapter 3.7 --- Note on Publications --- p.3-32Chapter CHAPTER 4 --- Pruning in Transform Coding of ImagesChapter 4.1 --- Introduction --- p.4-1Chapter 4.2 --- "Direct Fast Algorithms for DCT, WCT and SCT" --- p.4-3Chapter 4.2.1 --- Discrete Cosine Transform --- p.4-3Chapter 4.2.2 --- Weighted Cosine Transform --- p.4-7Chapter 4.2.3 --- Simplified Cosine Transform --- p.4-9Chapter 4.3 --- Pruning in Direct Fast Algorithms --- p.4-10Chapter 4.3.1 --- Discrete Cosine Transform --- p.4-10Chapter 4.3.2 --- Weighted Cosine Transform --- p.4-13Chapter 4.3.3 --- Simplified Cosine Transform --- p.4-15Chapter 4.4 --- Operations Saved by Using Pruning --- p.4-17Chapter 4.4.1 --- Discrete Cosine Transform --- p.4-17Chapter 4.4.2 --- Weighted Cosine Transform --- p.4-21Chapter 4.4.3 --- Simplified Cosine Transform --- p.4-23Chapter 4.4.4 --- Generalization Pruning Algorithm for DCT --- p.4-25Chapter 4.5 --- Concluding Remarks --- p.4-26Chapter 4.6 --- Note on Publications --- p.4-27Chapter CHAPTER 5 --- Efficient Encoding of DC Coefficient in Transform Coding SystemsChapter 5.1 --- Introduction --- p.5-1Chapter 5.2 --- Minimum Edge Difference (MED) Predictor --- p.5-3Chapter 5.3 --- Performance Evaluation --- p.5-6Chapter 5.4 --- Simulation Results --- p.5-9Chapter 5.5 --- Concluding Remarks --- p.5-14Chapter 5.6 --- Note on Publications --- p.5-14Chapter CHAPTER 6 --- Efficient Encoding Algorithms for Vector Quantization of ImagesChapter 6.1 --- Introduction --- p.6-1Chapter 6.2 --- Sub-Codebook Searching Algorithm (SCS) --- p.6-4Chapter 6.2.1 --- Formation of the Sub-codebook --- p.6-6Chapter 6.2.2 --- Premature Exit Conditions in the Searching Process --- p.6-8Chapter 6.2.3 --- Sub-Codebook Searching Algorithm --- p.6-11Chapter 6.3 --- Predictive Sub-Codebook Searching Algorithm (PSCS) --- p.6-13Chapter 6.4 --- Simulation Results --- p.6-17Chapter 6.5 --- Concluding Remarks --- p.5-20Chapter 6.6 --- Note on Publications --- p.6-21Chapter CHAPTER 7 --- Predictive Classified Address Vector Quantization of ImagesChapter 7.1 --- Introduction --- p.7-1Chapter 7.2 --- Optimal Three-Level Block Truncation Coding --- p.7-3Chapter 7.3 --- Predictive Classified Address Vector Quantization --- p.7-5Chapter 7.3.1 --- Classification of Images using Three-level BTC --- p.7-6Chapter 7.3.2 --- Predictive Mean Removal Technique --- p.7-8Chapter 7.3.3 --- Simplified Address VQ Technique --- p.7-9Chapter 7.3.4 --- Encoding Process of PCAVQ --- p.7-13Chapter 7.4 --- Simulation Results --- p.7-14Chapter 7.5 --- Concluding Remarks --- p.7-18Chapter 7.6 --- Note on Publications --- p.7-18Chapter CHAPTER 8 --- Recapitulation and Topics for Future InvestigationChapter 8.1 --- Recapitulation --- p.8-1Chapter 8.2 --- Topics for Future Investigation --- p.8-3REFERENCES --- p.R-1APPENDICESChapter A. --- Statistics of Monochrome Test Images --- p.A-lChapter B. --- Statistics of Color Test Images --- p.A-2Chapter C. --- Fortran Program Listing for the Pruned Fast DCT Algorithm --- p.A-3Chapter D. --- Training Set Images for Building the Codebook of Standard VQ Scheme --- p.A-5Chapter E. --- List of Publications --- p.A-

    Data compression using adaptive transform coding. Appendix 1: Item 1

    Get PDF
    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate

    The Space and Earth Science Data Compression Workshop

    Get PDF
    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system

    A human visual system based image coder

    Get PDF
    Over the years, society has changed considerably due to technological changes, and digital images have become part and parcel of our everyday lives. Irrespective of applications (i.e., digital camera) and services (information sharing, e.g., Youtube, archive / storage), there is the need for high image quality with high compression ratios. Hence, considerable efforts have been invested in the area of image compression. The traditional image compression systems take into account of statistical redundancies inherent in the image data. However, the development and adaptation of vision models, which take into account the properties of the human visual system (HVS), into picture coders have since shown promising results. The objective of the thesis is to propose the implementation of a vision model in two different manners in the JPEG2000 coding system: (a) a Perceptual Colour Distortion Measure (PCDM) for colour images in the encoding stage, and (b) a Perceptual Post Filtering (PPF) algorithm for colour images in the decoding stage. Both implementations are embedded into the JPEG2000 coder. The vision model here exploits the contrast sensitivity, the inter-orientation masking and intra-band masking visual properties of the HVS. Extensive calibration work has been undertaken to fine-tune the 42 model parameters of the PCDM and Just-Noticeable-Difference thresholds of the PPF for colour images. Evaluation with subjective assessments of PCDM based coder has shown perceived quality improvement over the JPEG2000 benchmark with the MSE (mean square error) and CVIS criteria. For the PPF adapted JPEG2000 decoder, performance evaluation has also shown promising results against the JPEG2000 benchmarks. Based on subjective evaluation, when both PCDM and PPF are used in the JPEG2000 coding system, the overall perceived image quality is superior to the stand-alone JPEG2000 with the PCDM

    Low bit-rate image sequence coding

    Get PDF

    Digital image compression.

    Get PDF
    Due to the rapid growth in information handling and transmission, there is a serious demand for more efficient data compression schemes. compression schemes address themselves to speech, visual and alphanumeric coded data. This thesis is concerned with the compression of visual data given in the form of still or moving pictures. such data is highly correlated spatially and in the context domain. A detailed study of some existing data compression systems is presented, in particular, the performance of DPCM was analysed by computer simulation, and the results examined both subjectively and objectively. The adaptive form of the prediction encoder is discussed and two new algorithms proposed, which increase the definition of the compressed image and reduce the overall mean square error. Two novel systems are proposed for image compression. The first is a bit plane image coding system based on a hierarchic quadtree structure in a transmission domain, using the Hadamard transform as a kernel. Good compression has been achieved from this scheme, particularly for images with low detail. The second scheme uses a learning automata to predict the probability distribution of the grey levels of an image related to its spatial context and position. An optimal reward/punishment function is proposed such that the automata converges to its steady state within 4000 iterations • such a high speed of convergence together with Huffman coding results in efficient compression for images and is shown to be applicable to other types of data. . The performance and evaluation of all the proposed .'systems have been tested by computer simulation and the results presented both quantitatively and qualitatively."The advantages and disadvantages of each system are discussed and suggestions for improvement. given

    Investigating Polynomial Fitting Schemes for Image Compression

    Get PDF
    Image compression is a means to perform transmission or storage of visual data in the most economical way. Though many algorithms have been reported, research is still needed to cope with the continuous demand for more efficient transmission or storage. This research work explores and implements polynomial fitting techniques as means to perform block-based lossy image compression. In an attempt to investigate nonpolynomial models, a region-based scheme is implemented to fit the whole image using bell-shaped functions. The idea is simply to view an image as a 3D geographical map consisting of hills and valleys. However, the scheme suffers from high computational demands and inferiority to many available image compression schemes. Hence, only polynomial models get further considerations. A first order polynomial (plane) model is designed to work in a multiplication- and division-free (MDF) environment. The intensity values of each image block are fitted to a plane and the parameters are then quantized and coded. Blocking artefacts, a common drawback of block-based image compression techniques, are reduced using an MDF line-fitting scheme at blocks’ boundaries. It is shown that a compression ratio of 62:1 at 28.8dB is attainable for the standard image PEPPER, outperforming JPEG, both objectively and subjectively for this part of the rate-distortion characteristics. Inter-block prediction can substantially improve the compression performance of the plane model to reach a compression ratio of 112:1 at 27.9dB. This improvement, however, slightly increases computational complexity and reduces pipelining capability. Although JPEG2000 is not a block-based scheme, it is encouraging that the proposed prediction scheme performs better in comparison to JPEG 2000, computationally and qualitatively. However, more experiments are needed to have a more concrete comparison. To reduce blocking artefacts, a new postprocessing scheme, based on Weber’s law, is employed. It is reported that images postprocessed using this scheme are subjectively more pleasing with a marginal increase in PSNR (<0.3 dB). The Weber’s law is modified to perform edge detection and quality assessment tasks. These results motivate the exploration of higher order polynomials, using three parameters to maintain comparable compression performance. To investigate the impact of higher order polynomials, through an approximate asymptotic behaviour, a novel linear mapping scheme is designed. Though computationally demanding, the performances of higher order polynomial approximation schemes are comparable to that of the plane model. This clearly demonstrates the powerful approximation capability of the plane model. As such, the proposed linear mapping scheme constitutes a new approach in image modeling, and hence worth future consideration

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.
    corecore