7,899 research outputs found

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    Optimization of Battery Energy Storage to Improve Power System Oscillation Damping

    Full text link
    A placement problem for multiple Battery Energy Storage System (BESS) units is formulated towards power system transient voltage stability enhancement in this paper. The problem is solved by the Cross-Entropy (CE) optimization method. A simulation-based approach is adopted to incorporate higher-order dynamics and nonlinearities of generators and loads. The objective is to maximize the voltage stability index, which is setup based on certain grid-codes. Formulations of the optimization problem are then discussed. Finally, the proposed approach is implemented in MATLAB/DIgSILENT and tested on the New England 39-Bus system. Results indicate that installing BESS units at the optimized location can alleviate transient voltage instability issue compared with the original system with no BESS. The CE placement algorithm is also compared with the classic PSO (Particle Swarm Optimization) method, and its superiority is demonstrated in terms of a faster convergence rate with matched solution qualities.Comment: This paper has been accepted by IEEE Transactions on Sustainable Energy and now still in online-publication phase, IEEE Transactions on Sustainable Energy. 201

    Optimization of a power line communication system to manage electric vehicle charging stations in a smart grid

    Get PDF
    In this paper, a procedure is proposed to design a power line communication (PLC) system to perform the digital transmission in a distributed energy storage system consisting of fleets of electric cars. PLC uses existing power cables or wires as data communication multicarrier channels. For each vehicle, the information to be transmitted can be, for example: the models of the batteries, the level of the charge state, and the schedule of charging/discharging. Orthogonal frequency division multiplexing modulation (OFDM) is used for the bit loading, whose parameters are optimized to find the best compromise between the communication conflicting objectives of minimizing the signal power, maximizing the bit rate, and minimizing the bit error rate. The off-line design is modeled as a multi-objective optimization problem, whose solution supplies a set of Pareto optimal solutions. At the same time, as many charging stations share part of the transmission line, the optimization problem includes also the assignment of the sub-carriers to the single charging stations. Each connection between the control node and a charging station has its own frequency response and is affected by a noise spectrum. In this paper, a procedure is presented, called Chimera, which allows one to solve the multi-objective optimization problem with respect to a unique frequency response, representing the whole set of lines connecting each charging station with the central node. Among the provided Pareto solutions, the designer will make the final decision based on the control system requirements and/or the hardware constraints

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Smart management strategies of utility-scale energy storage systems in power networks

    Get PDF
    Power systems are presently experiencing a period of rapid change driven by various interrelated issues, e.g., integration of renewables, demand management, power congestion, power quality requirements, and frequency regulation. Although the deployment of Energy Storage Systems (ESSs) has been shown to provide effective solutions to many of these issues, misplacement or non-optimal sizing of these systems can adversely affect network performance. This present research has revealed some novel working strategies for optimal allocation and sizing of utility-scale ESSs to address some important issues of power networks at both distribution and transmission levels. The optimization strategies employed for ESS placement and sizing successfully improved the following aspects of power systems: performance and power quality of the distribution networks investigated, the frequency response of the transmission networks studied, and facilitation of the integration of renewable generation (wind and solar). This present research provides effective solutions to some real power industry problems including minimizationof voltage deviation, power losses, peak demand, flickering, and frequency deviation as well as rate of change of frequency (ROCOF). Detailed simulation results suggest that ESS allocation using both uniform and non-uniform ESS sizing approaches is useful for improving distribution network performance as well as power quality. Regarding performance parameters, voltage profile improvement, real and reactive power losses, and line loading are considered, while voltage deviation and flickers are taken into account as power quality parameters. Further, the study shows that the PQ injection-based ESS placement strategy performs better than the P injection-based approach (in relation to performance improvement), providing more reactive power compensations. The simulation results also demonstrate that obtaining the power size of a battery ESS (MVA) is a sensible approach for frequency support. Hence, an appropriate sizing of grid-scale ESSs including tuning of parameters Kp and Tip (active part of the PQ controller) assist in improving the frequency response by providing necessary active power. Overall, the proposed ESS allocation and sizing approaches can underpin a transition plan from the current power grid to a future one

    Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm

    Get PDF
    The deployment of utility-scale energy storage systems (ESSs) can be a significant avenue for improving the performance of distribution networks. An optimally placed ESS can reduce power losses and line loading, mitigate peak network demand, improve voltage profile, and in some cases contribute to the network fault level diagnosis. This paper proposes a strategy for optimal placement of distributed ESSs in distribution networks to minimize voltage deviation, line loading, and power losses. The optimal placement of distributed ESSs is investigated in a medium voltage IEEE-33 bus distribution system, which is influenced by a high penetration of renewable (solar and wind) distributed generation, for two scenarios: (1) with a uniform ESS size and (2) with non-uniform ESS sizes. System models for the proposed implementations are developed, analyzed, and tested using DIgSILENT PowerFactory. The artificial bee colony optimization approach is employed to optimize the objective function parameters through a Python script automating simulation events in PowerFactory. The optimization results, obtained from the artificial bee colony approach, are also compared with the use of a particle swarm optimization algorithm. The simulation results suggest that the proposed ESS placement approach can successfully achieve the objectives of voltage profile improvement, line loading minimization, and power loss reduction, and thereby significantly improve distribution network performance

    Optimal Planning and Operation Management of a Ship Electrical Power System with Energy Storage System

    Get PDF
    • …
    corecore