1,024 research outputs found

    Multiprocessing techniques for unmanned multifunctional satellites Final report,

    Get PDF
    Simulation of on-board multiprocessor for long lived unmanned space satellite contro

    Design of a Scan Chain for Side Channel Attacks on AES Cryptosystem for Improved Security

    Get PDF
    Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model

    Implementation of neural networks as CMOS integrated circuits

    Get PDF

    Towards an embedded board-level tester: study of a configurable test processor

    Get PDF
    The demand for electronic systems with more features, higher performance, and less power consumption increases continuously. This is a real challenge for design and test engineers because they have to deal with electronic systems with ever-increasing complexity maintaining production and test costs low and meeting critical time to market deadlines. For a test engineer working at the board-level, this means that manufacturing defects must be detected as soon as possible and at a low cost. However, the use of classical test techniques for testing modern printed circuit boards is not sufficient, and in the worst case these techniques cannot be used at all. This is mainly due to modern packaging technologies, a high device density, and high operation frequencies of modern printed circuit boards. This leads to very long test times, low fault coverage, and high test costs. This dissertation addresses these issues and proposes an FPGA-based test approach for printed circuit boards. The concept is based on a configurable test processor that is temporarily implemented in the on-board FPGA and provides the corresponding mechanisms to communicate to external test equipment and co-processors implemented in the FPGA. This embedded test approach provides the flexibility to implement test functions either in the external test equipment or in the FPGA. In this manner, tests are executed at-speed increasing the fault coverage, test times are reduced, and the test system can be adapted automatically to the properties of the FPGA and devices located on the board. An essential part of the FPGA-based test approach deals with the development of a test processor. In this dissertation the required properties of the processor are discussed, and it is shown that the adaptation to the specific test scenario plays a very important role for the optimization. For this purpose, the test processor is equipped with configuration parameters at the instruction set architecture and microarchitecture level. Additionally, an automatic generation process for the test system and for the computation of some of the processor’s configuration parameters is proposed. The automatic generation process uses as input a model known as the device under test model (DUT-M). In order to evaluate the entire FPGA-based test approach and the viability of a processor for testing printed circuit boards, the developed test system is used to test interconnections to two different devices: a static random memory (SRAM) and a liquid crystal display (LCD). Experiments were conducted in order to determine the resource utilization of the processor and FPGA-based test system and to measure test time when different test functions are implemented in the external test equipment or the FPGA. It has been shown that the introduced approach is suitable to test printed circuit boards and that the test processor represents a realistic alternative for testing at board-level.Der Bedarf an elektronischen Systemen mit zusätzlichen Merkmalen, höherer Leistung und geringerem Energieverbrauch nimmt ständig zu. Dies stellt eine erhebliche Herausforderung für Entwicklungs- und Testingenieure dar, weil sie sich mit elektronischen Systemen mit einer steigenden Komplexität zu befassen haben. Außerdem müssen die Herstellungs- und Testkosten gering bleiben und die Produkteinführungsfristen so kurz wie möglich gehalten werden. Daraus folgt, dass ein Testingenieur, der auf Leiterplatten-Ebene arbeitet, die Herstellungsfehler so früh wie möglich entdecken und dabei möglichst niedrige Kosten verursachen soll. Allerdings sind die klassischen Testmethoden nicht in der Lage, die Anforderungen von modernen Leiterplatten zu erfüllen und im schlimmsten Fall können diese Testmethoden überhaupt nicht verwendet werden. Dies liegt vor allem an modernen Gehäuse-Technologien, der hohen Bauteildichte und den hohen Arbeitsfrequenzen von modernen Leiterplatten. Das führt zu sehr langen Testzeiten, geringer Testabdeckung und hohen Testkosten. Die Dissertation greift diese Problematik auf und liefert einen FPGA-basierten Testansatz für Leiterplatten. Das Konzept beruht auf einem konfigurierbaren Testprozessor, welcher im On-Board-FPGA temporär implementiert wird und die entsprechenden Mechanismen für die Kommunikation mit der externen Testeinrichtung und Co-Prozessoren im FPGA bereitstellt. Dadurch ist es möglich Testfunktionen flexibel entweder auf der externen Testeinrichtung oder auf dem FPGA zu implementieren. Auf diese Weise werden Tests at-speed ausgeführt, um die Testabdeckung zu erhöhen. Außerdem wird die Testzeit verkürzt und das Testsystem automatisch an die Eigenschaften des FPGAs und anderer Bauteile auf der Leiterplatte angepasst. Ein wesentlicher Teil des FPGA-basierten Testansatzes umfasst die Entwicklung eines Testprozessors. In dieser Dissertation wird über die benötigten Eigenschaften des Prozessors diskutiert und es wird gezeigt, dass die Anpassung des Prozessors an den spezifischen Testfall von großer Bedeutung für die Optimierung ist. Zu diesem Zweck wird der Prozessor mit Konfigurationsparametern auf der Befehlssatzarchitektur-Ebene und Mikroarchitektur-Ebene ausgerüstet. Außerdem wird ein automatischer Generierungsprozess für die Realisierung des Testsystems und für die Berechnung einer Untergruppe von Konfigurationsparametern des Prozessors vorgestellt. Der automatische Generierungsprozess benutzt als Eingangsinformation ein Modell des Prüflings (device under test model, DUT-M). Das entwickelte Testsystem wurde zum Testen von Leiterplatten für Verbindungen zwischen dem FPGA und zwei Bauteilen verwendet, um den FPGA-basierten Testansatz und die Durchführbarkeit des Testprozessors für das Testen auf Leiterplatte-Ebene zu evaluieren. Die zwei Bauteile sind ein Speicher mit direktem Zugriff (static random-access memory, SRAM) und eine Flüssigkristallanzeige (liquid crystal display, LCD). Die Experimente wurden durchgeführt, um den Ressourcenverbrauch des Prozessors und Testsystems festzustellen und um die Testzeit zu messen. Dies geschah durch die Implementierung von unterschiedlichen Testfunktionen auf der externen Testeinrichtung und dem FPGA. Dadurch konnte gezeigt werden, dass der FPGA-basierte Ansatz für das Testen von Leiterplatten geeignet ist und dass der Testprozessor eine realistische Alternative für das Testen auf Leiterplatten-Ebene ist

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    Intelligent cell memory system for real time engineering applications

    Get PDF

    Gallium arsenide bit-serial integrated circuits

    Get PDF

    Secure Mutual Testing Strategy for Cryptographic SoCs

    Get PDF
    This article presents a secure mutual testing strategy for System-on-Chips (SoCs) that implement cryptographic functionalities. Such approach eliminates the need for an additional trusted component that is used to test security sensitive cores in a SoC, like symmetric and public-key cryptographic modules. We combine two test approaches: Logic Built In Self Test (BIST) and secure scan-chain based testing and develop a strategy that preserves the test quality of the standard test methods, enhancing security of the testing scheme. In order to minimize the area overhead of the presented solution, we re-use the existing modules in different manners: a public-key cryptographic core to build the BIST infrastructure and a symmetric one to authenticate a device under test to a test server, thus preventing an unauthorized user from accessing the test interface. By doing so, we achieve both testability and security at the minimal cost
    corecore