273 research outputs found

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    Energy efficient tag identification algorithms for RFID: survey, motivation and new design

    Get PDF
    RFID is widely applied in massive tag based applications, thus effective anti-collision algorithms to reduce communication overhead are of great importance to RFID in achieving energy and time efficiency. Existing MAC algorithms are primarily focusing on improving system throughput or reducing total identification time. However, with the advancement of embedded systems and mobile applications, the energy consumption aspect is increasingly important and should be considered in the new design. In this article, we start with a comprehensive review and analysis of the state-of-the-art anti-collision algorithms. Based on our existing works, we further discuss a novel design of anti-collision algorithm and show its effectiveness in achieving energy efficiency for the RFID system using EPCglobal C1 Gen2 UHF standard

    A Reduced Complexity of Vahedi's Tag Estimation Method for DFSA

    Get PDF
    In order to calculate the number of tags in a radio frequency identification (RFID) system, several tag estimation methods have been investigated in literature and most of the available estimation methods need the overall knowledge of idle, success and collision slots of the previous frame to carry out the tag estimation process. In this article, we present three techniques to reduce the complexity of Vahedi’s tag estimation for tag collision resolution in RFID systems using dynamic frame slotted ALOHA. Our modified and useful approach considers the information about only the number of empty, successful or colliding slots in the previous frame for the tag estimation. Three decision rules were obtained by maximizing the likelihood of success, idle and collision which helps in the reduction of complexity substantially. However, the accuracy of estimation decreases for success-only and idle-only methods while the collision-only method gives a consistent and lower estimate error when the frame sizes and the number of tags increase

    Improved RFID Anti-collision Protocol for EPCglobal Class-1 Generation-2

    Get PDF
    One of the important feature in the RFID technology is its functionality without needs to line of sight which makes it more feasible than other similar technologies. The problem occurs when more than one tag reply to the reader at the same time and collide together. To resolve the mentioned issue an anti-collision algorithm has to be used. The anti-collision algorithms are mostly efficient if the number of tags are small and has not been designed for large number of tags. In some applications that the number of tags may be hundreds of tags the existing mechanism may reduce the performance of the system due to delayed algorithms. In this paper an improved anti-collision protocol has been proposed. A modified two-parameter step size method for Q algorithm is also used to increase the efficiency of reading. The step sizes are adjusted depending on collisions in previous round. The number of slots in each round is also adjusted to prevent collisions in next rounds. The performance of proposed protocol has been evaluated using RFID module that implements EPCglobal C1G2 and designed especially for IoT environment and find the proposed protocol effective. Keywords: RFID, Anti-collision, EPCglobal, Q algorithm, DFSA

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    A Control Method to Reduce Interferences and Collisions between Multiple RFID Tags and RFID Readers

    Get PDF
    Radio frequency identification technology (RFID) is one of the fastest developing technologies today. Although it has significant performance in use of Auto-ID applications, the presence of multiple tags in a RFID system can lead to interferences between each tags which is called Collision. There are many method to overcome this issue and this project introduces the use of DS-CDMA technique to overcome this issue. The Simulink simulation environment is used to simulate the use of DS-CDMA in RFID system. The results obtained clearly show the concept of this method is leading to a solution for RFID collision issues. However, the further improvement in simulations and concept of the method is most recommended in future project work
    • …
    corecore