2,231 research outputs found

    Web-based interface system for bedside monitor

    Get PDF
    From face-to-face consultation to medicine at a distance, technology is changing the way medical services are delivered to the people. We are going into an era where the information is being digitized to be stored in a database. This is done in order to reduce information overlap and redundancy that are the main problems the health care sector are facing right now. More hospitals in other more advanced countries are going paperless. In order to provide better services to the critically ill patients in the ICU or CCU, a data acquisition program is developed for the acquisition of vital signs monitored in the critical care units. This work discusses the work done in extracting the data and signal from patient monitor BSM 8800 to the computer. The data are acquired using RS232C Interface Protocol. The vital signs acquired include oxygen saturation (SaCh), heart rate (HR), electrocardiograph (ECG) signal, non-invasive blood pressure (NIBP), respiration rate (RR), temperature (TEMP) and end tidal carbon dioxide (PETCO2 or ETCO2). Ventricular Premature Contraction (VPC), ST level and arrhythmia information are also acquired and displayed to provide a more thorough information on the condition of the patients. Alarm detection is also programmed so that in critical conditions the vital signs will be displayed in red for extra caution. An ECG user control is designed and embedded in the web page in order to convert and plot the ECG waveform from hexadecimal values sent from the bedside monitor. The user control has been tested its accuracy and proved its validity to reconstruct the original ECG waveform. Basic patient information can also be seen from the graphical user interface (GUI) that has been developed. Physicians and medical practitioners have to register with the system before gaining access to the system and only the physician-in-charge of the patient can see the more intricate details of the patient

    Mathematical models for bistable nematic liquid crystal displays

    Get PDF
    Bistable Liquid Crystal Displays (LCDs) offer the potential for considerable power savings, compared with conventional (monostable) LCDs. The existence of two (or more) stable field-free states that are optically-distinct means that contrast can be maintained in a display without an externally-applied electric field. An applied field is required only to switch the device from one state to the other, as needed. This dissertation focuses on theoretical models of a possible bistable nematic device, whose operating principle relies on controlling surface anchoring conditions. Switching between the two stable steady states is achieved by application of a transient electric field. A 1D model is considered first, and means are explored, by which the design may be optimized, in terms of optical contrast, manufacturing considerations, switching field strength and switching times. The compromises inherent in these conflicting design criteria are discussed. Motivated by a desire to improve on the results of this 1D model, and to test its robustness, a two-dimensional geometry is considered next, in which variable surface anchoring conditions are used to control the steady-state solutions and it is explored how different anchoring conditions can influence the number and type of solutions, and whether or not switching is possible between the states. A wide range of possible behaviors are found, including bistability, tristability and tetrastability, and it is investigated how the solution landscape changes as the boundary conditions are tuned. All of these investigations are based (for simplicity) on an assumption of uniform electric field within the nematic liquid crystal. To check the validity of this assumption, the study is concluded by formulating the problem with non-uniform field, and comparing the results to the uniform field case

    The dynamics of bistable liquid crystal wells

    Get PDF
    A planar bistable liquid crystal device, reported in Tsakonas et al. [27], is modelled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micron-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W ≥ 0 while rotated solutions only exist for W ≥ Wc > 0, where Wc is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal to rotated and rotated to diagonal switching by allowing for variable anchoring strength across the domain boundary

    Effective free energy method for nematic liquid crystals in contact with structured substrates

    Full text link
    We study the phase behavior of a nematic liquid crystal confined between a flat substrate with strong anchoring and a patterned substrate whose structure and local anchoring strength we vary. By first evaluating an effective surface free energy function characterizing the patterned substrate we derive an expression for the effective free energy of the confined nematic liquid crystal. Then we determine phase diagrams involving a homogeneous state in which the nematic director is almost uniform and a hybrid aligned nematic state in which the orientation of the director varies through the cell. Direct minimization of the free energy functional were performed in order to test the predictions of the effective free energy method. We find remarkably good agreement between the phase boundaries calculated from the two approaches. In addition the effective energy method allows one to determine the energy barriers between two states in a bistable nematic device.Comment: 10 pages, 7 figures, submitte

    Zenithal bistable device: comparison of modeling and experiment

    Get PDF
    A comparative modeling and experimental study of the zenithal bistable liquid crystal device is presented. A dynamic Landau de Gennes theory of nematic liquid crystals is solved numerically to model the electric field induced latching of the device and the results are compared with experimental measurements and theoretical approximations. The study gives a clear insight into the latching mechanism dynamics and enables the dependence of the device latching on both material parameters and surface shape to be determined. Analytical approximation highlights a route to optimize material selection in terms of latching voltages and the numerical model, which includes an accurate surface representation, recovers the complex surface shape effects. Predictions of device performance are presented as a function of both surface anchoring strength and surface shape and grating pitch. A measurement of the homeotropic anchoring energy has been undertaken by comparing the voltage response as a function of cell gap; we find the homeotropic anchoring energies can be varied in the range 0.5 to 4 (10-44 J m-2)

    Zenithal bistability in a nematic liquid crystal device with a monostable surface condition

    Get PDF
    The ground-state director configurations in a grating-aligned, zenithally bistable nematic device are calculated in two dimensions using a Q tensor approach. The director profiles generated are well described by a one-dimensional variation of the director across the width of the device, with the distorted region near the grating replaced by an effective surface anchoring energy. This work shows that device bistability can in fact be achieved by using a monostable surface term in the one-dimensional model. This implies that is should be possible to construct a device showing zenithal bistability without the need for a micropatterned surface

    Phase behavior of a nematic liquid crystal in contact with a chemically and geometrically structured substrate

    Full text link
    A nematic liquid crystal in contact with a grating surface possessing an alternating stripe pattern of locally homeotropic and planar anchoring is studied within the Frank--Oseen model. The combination of both chemical and geometrical surface pattern leads to rich phase diagrams, involving a homeotropic, a planar, and a tilted nematic texture. The effect of the groove depth and the anchoring strengths on the location and the order of phase transitions between different nematic textures is studied. A zenithally bistable nematic device is investigated by confining a nematic liquid crystal between the patterned grating surface and a flat substrate with strong homeotropic anchoring.Comment: 7 pages, 7 figure

    Computer simulation of bistable switching in a nematic device containing pear-shaped particles

    Get PDF
    We study the microscopic basis of bistable switching of a confined liquid crystal via Monte Carlo simulations of hard pear-shaped particles. Using both dielectric and dipolar field couplings to this intrinsically flexoelectric fluid, it is shown that pulsed fields of opposing polarity can be used to switch between the vertical and hybrid aligned states. Further, it is shown that the field-susceptibility of the surface polarisation, rather than the bulk flexoelectricity, is the main driver of this switching behaviour.</p

    Modelling nematohydrodynamics in liquid crystal devices

    Full text link
    We formulate a lattice Boltzmann algorithm which solves the hydrodynamic equations of motion for nematic liquid crystals. The applicability of the approach is demonstrated by presenting results for two liquid crystal devices where flow has an important role to play in the switching.Comment: 6 pages including 5 figure
    • …
    corecore