42 research outputs found

    Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep

    Get PDF
    During non-rapid eye movement (NREM) sleep (stage N3), when consciousness fades, cortico-cortical interactions are impaired while neurons are still active and reactive. Why is this? We compared cortico-cortical evoked-potentials recorded during wakefulness and NREM by means of time-frequency analysis and phase-locking measures in 8 epileptic patients undergoing intra-cerebral stimulations/recordings for clinical evaluation. We observed that, while during wakefulness electrical stimulation triggers a chain of deterministic phase-locked activations in its cortical targets, during NREM the same input induces a slow wave associated with an OFF-period (suppression of power > 20 Hz), possibly reflecting a neuronal down-state. Crucially, after the OFF-period, cortical activity resumes to wakefulness-like levels, but the deterministic effects of the initial input are lost, as indicated by a sharp drop of phase-locked activity. These findings suggest that the intrinsic tendency of cortical neurons to fall into a down-state after a transient activation (i.e. bistability) prevents the emergence of stable patterns of causal interactions among cortical areas during NREM. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions in which thalamo-cortical information integration and consciousness are impaired in spite of preserved neuronal activity. (C) 2015 The Authors. Published by Elsevier Inc.Peer reviewe

    SLEEP-LIKE CORTICAL BISTABILITY IN VEGETATIVE STATE PATIENTS

    Get PDF
    The human brain is able to generate a wide repertoire of behavioral and psychological phenomena spanning from simple motor acts to cognition, from unimodal sensory perceptions to conscious experience. All these abilities are based on two key parameters of cortico-thalamic circuits functioning: the reactivity to a direct, local stimulation (cortical excitability) and the ability to causally interact (cortical effective connectivity). Indeed, alterations of these parameters have been suggested to underlie neurologic and psychiatric conditions. Over the last ten years, high-density electroencephalography combined with transcranial magnetic stimulation (TMS/hd-EEG) has been used to non-invasively probe cortical excitability and connectivity and to track over time pathological alterations, plastic changes and therapy-induced modifications in cortical circuits. A recently proposed theory suggests that consciousness depends on the brain\u2019s ability to engage in complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). In a recent series of experiments the electroencephalographic TMS-evoked brain response was recorded in healthy subjects during wakefulness, non-rapid eyes movement sleep (NREM), under pharmacological conditions (anesthesia), and pathological conditions (severely brain-injured, vegetative state patients). Indeed, TMS/hd-EEG measurements showed that during wakefulness the brain is able to sustain long-range specific patterns of activation, while when consciousness fades in NREM sleep, anesthesia and vegetative state, the thalamo-cortical system produces either a local or a global slow wave which underlies respectively a loss of differentiation or integration. We hypothesize that, like spontaneous sleep slow waves, the slow waves triggered by TMS are due to bistability between periods of neuronal activity (up-state) and silence (down-state) in cortical networks. Thalamo-cortical bistability could impair the ability of thalamo-cortical circuits to sustain long-range, differentiated patterns of activation, a key theoretical requisite for consciousness. Animal studies show that the extracellular signature of the down-state is a transient suppression of high frequency (>20Hz) power in the local field potential (LFP). More recently, intracranial recordings during NREM sleep in humans have shown that a intracranial stimulations induce a widespread suppression of high frequencies (i.e. cortical down-states) that impair the ability of thalamo-cortical circuits to engage in causal interactions. In the present thesis we use a TMS/hd-EEG approach in patients affected by disorders of consciousness such as vegetative state (VS) and minimally conscious state (MCS) to investigate whether bistability could underlie also pathological loss of consciousness. To verify this hypothesis, we recorded TMS-evoked potentials (TEPs) in awake VS and MCS patients as well as in healthy controls (HC) during wakefulness and NREM sleep. TEPs were analyzed by means of time-frequency analyses (power and phase-locking factor - PLF). We observed that TEPs recorded in VS patients were characterized by a large positive-negative deflection, closely resembling the one recorded in HC during NREM sleep. This sleep-like slow-wave was associated with a significant suppression of power in the high frequency band (>20 Hz) together with an early drop of PLF. Interestingly, in VS patients the power suppression slowly recovered to the baseline whereas in the NREM sleep of HC it was replaced by a late increase of power. Finally, the recovery of consciousness assessed in two patients evaluated longitudinally was paralleled by the resurgence of TEPs high frequency oscillations and by an increase of PLF duration. These results suggest that the slow waves evoked by TMS in VS patients possibly reflect a condition of cortical bistability that prevents the entrainment of thalamocortical modules in effective interactions and, hence, the emergence of consciousness. Intriguingly, the resumption of TEPs high frequency oscillations and a longer duration of phase-locked components (PLF) seem to be associated with the recovery of consciousness. Since bistability is, in principle, reversible and its mechanisms are well understood at the cellular and network level, it may represent a suitable target for novel therapeutic approaches in patients in whom consciousness is impaired, in spite of preserved cortical activity

    Consciousness and cortical responsiveness: a within-state study during non-rapid eye movement sleep.

    Get PDF
    When subjects become unconscious, there is a characteristic change in the way the cerebral cortex responds to perturbations, as can be assessed using transcranial magnetic stimulation and electroencephalography (TMS-EEG). For instance, compared to wakefulness, during non-rapid eye movement (NREM) sleep TMS elicits a larger positive-negative wave, fewer phase-locked oscillations, and an overall simpler response. However, many physiological variables also change when subjects go from wake to sleep, anesthesia, or coma. To avoid these confounding factors, we focused on NREM sleep only and measured TMS-evoked EEG responses before awakening the subjects and asking them if they had been conscious (dreaming) or not. As shown here, when subjects reported no conscious experience upon awakening, TMS evoked a larger negative deflection and a shorter phase-locked response compared to when they reported a dream. Moreover, the amplitude of the negative deflection-a hallmark of neuronal bistability according to intracranial studies-was inversely correlated with the length of the dream report (i.e., total word count). These findings suggest that variations in the level of consciousness within the same physiological state are associated with changes in the underlying bistability in cortical circuits

    BREAKDOWN OF CAUSALITY AND CORTICAL DOWNSTATE WITHIN THE SLEEPING BRAIN

    Get PDF
    Theoretically, consciousness depends on the brain\u2019s ability to engage in complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). In a recent series of experiments the electroencephalographic response to a direct cortical stimulation in humans was recorded during wakefulness and non-rapid eyes movement sleep (NREM) by means of a combination of transcranial magnetic stimulation (TMS) and high-density electroencephalogram (hd-EEG). TMS/hd-EEG measurements showed that, while during wakefulness the brain is able to sustain long-range specific patterns of activation, during NREM sleep, when consciousness fades, this ability is lost: the thalamocortical system, despite being active and reactive, either breaks down in causally independent modules (producing a local slow wave), or it bursts into an explosive and non-specific response (producing a global EEG slow wave). We hypothesize that, like spontaneous sleep slow waves, the slow waves triggered by TMS during deep sleep are due to bistability between periods of hyperpolarized down-state in cortical neurons, and periods of activation (up-state). In this condition, the inescapable occurrence of a silent, down-state after an initial activation could impair the ability of thalamocortical circuits to sustain long-range, differentiated patterns of activation, a theoretical requisite for consciousness. According to animal experiments the extracellular signature of the downstate is a transient suppression of high frequency (20Hz) oscillations \u2013 that is followed by a loss of both PLF and PLV, in spite of restored levels of neuronal activity. These results point to bistability as the underlying critical mechanism that prevents the emergence of complex interactions in human thalamocortical networks when consciousness is lost during NREM sleep. This finding is particularly relevant because a similar mechanism may play a role in other conditions where loss of consciousness is paralleled by the appearance of spontaneous (or TMS evoked) slow waves such as some kind of anesthesia and in brain injured subjects

    The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation

    Get PDF
    Wakefulness and sleep arise from global changes in brain physiology that may also govern the flow of neural activity between cortical regions responsible for perceptual processing vs planning and action. To test whether and how the sleep/wake cycle affects the overall propagation of neural activity in large-scale brain networks, we applied single-pulse electrical stimulation (SPES) in patients implanted with intracranial EEG electrodes for epilepsy surgery. SPES elicited cortico-cortical spectral responses at high-gamma frequencies (CCSRHG, 80-150 Hz), which indexes changes in neuronal population firing rates. Using event-related causality analysis (ERC), we found that the overall patterns of neural propagation among sites with CCSRHG were different during wakefulness and different sleep stages. For example, stimulation of frontal lobe elicited greater propagation toward parietal lobe during slow wave sleep than during wakefulness. During REM sleep, we observed a decrease in propagation within frontal lobe, and an increase in propagation within parietal lobe, elicited by frontal and parietal stimulation, respectively. These biases in the directionality of large-scale cortical network dynamics during REM sleep could potentially account for some of the unique experiential aspects of this sleep stage. Together these findings suggest that the regulation of conscious awareness and sleep is associated with differences in the balance of neural propagation across large-scale frontal-parietal networks

    Stratification of unresponsive patients by an independently validated index of brain complexity.

    Get PDF
    OBJECTIVE: Validating objective, brain-based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness-the Perturbational Complexity Index (PCI)-in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). METHODS: The benchmark population encompassed 150 healthy controls and communicative brain-injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). RESULTS: We found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. INTERPRETATION: Given its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high-PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior

    Sleep as a model to understand neuroplasticity and recovery after stroke : observational, perturbational and interventional approaches

    Get PDF
    Our own experiences with disturbances to sleep demonstrate its crucial role in the recovery of cognitive functions. This importance is likely enhanced in the recovery from stroke; both in terms of its physiology and cognitive abilities. Decades of experimental research have highlighted which aspects and mechanisms of sleep are likely to underlie these forms of recovery. Conversely, damage to certain areas of the brain, as well as the indirect effects of stroke, may disrupt sleep. However, only limited research has been conducted which seeks to directly explore this bidirectional link between both the macro and micro-architecture of sleep and stroke. Here we describe a series of semi-independent approaches that aim to establish this link through observational, perturbational, and interventional experiments. Our primary aim is to describe the methodology for future clinical and translational research needed to delineate competing accounts of the current data. At the observational level we suggest the use of high-density EEG recording, combined analysis of macro and micro-architecture of sleep, detailed analysis of the stroke lesion, and sensitive measures of functional recovery. The perturbational approach attempts to find the causal links between sleep and stroke. We promote the use of transcranial magnetic stimulation combined with EEG to examine the cortical dynamics of the peri-infarct stroke area. Translational research should take this a step further using optogenetic techniques targeting more specific cell populations. The interventional approach focuses on how the same clinical and translational perturbational techniques can be adapted to influence long-term recovery of function

    SLEEPING WHILE AWAKE: A NEUROPHYSIOLOGICAL INVESTIGATION ON SLEEP DURING WAKEFULNESS.

    Get PDF
    Il sonno e la veglia vengono comunemente considerati come due stati distinti. L\u2019alternanza tra essi, la cui presenza \ue8 stata dimostrata in ogni specie animale studiata fino ad oggi, sembra essere una delle caratteristiche che definisce la nostra vita. Allo stesso tempo, per\uf2, le scoperte portate alla luce negli ultimi decenni hanno offuscato i confini tra questi due stati. I meccanismi del sonno hanno sempre affascinato i neurofisiologi, che infatti, nell\u2019ultimo secolo, li hanno caratterizzati in dettaglio: ora sappiamo che all\u2019attivit\ue0 del sonno sottost\ue0 una specifica attivit\ue0 neuronale chiamata slow oscillation. La slow oscillation, che \ue8 costituita da (ancora una volta) un\u2019alternanza tra periodi di attivit\ue0 e periodi di iperpolarizzazione e silenzio neuronale (OFF-periods), \ue8 la modalit\ue0 base di attivazione del cervello dormiente. Questa alternanza \ue8 dovuta alla tendenza dei neuroni surante lo stato di sonno, di passare ad un periodo silente dopo un\u2019attivazione iniziale, una tendenza a cui viene dato il nome di bistabilit\ue0 neuronale. Molti studi hanno dimostrato come la bistabilit\ue0 neuronale tipica del sonno ed i relativi OFF-periods, possano accadere anche durante la veglia in particolari condizioni patologiche, nelle transizioni del sonno e durante le deprivazioni di sonno. Per questo motivo, se accettassimo che la bistabilit\ue0 neuronale e gli OFF-periods rappresentino una caratteristica fondamentale del sonno, allora dovremmo ammettere che stiamo assistendo ad un cambio di paradigma: da una prospettiva neurofisiologica il sonno pu\uf2 intrudere nella veglia. In questa tesi ho analizzato i nuovi -fluidi- confini tra sonno e veglia e le possibili implicazioni di questi nel problema della persistenza personale attraverso il tempo. Inoltre, ho studiato le implicazioni cliniche dell\u2019intrusione di sonno nella veglia in pazienti con lesioni cerebrali focali di natura ischemica. In particolare, i miei obiettivi sono stati: 1) Dimostrare come la bistabilit\ue0 neuronale possa essere responsabile della perdita di funzione nei pazienti affetti da ischemia cerebrale e come questo potrebbe avere implicazioni nello studio della patofisiologia dell\u2019ischemia cerebrale e nella sua terapia; 2) Stabilire le basi per un modello di sonno locale presente nella vita di tutti i giorni: la sensazione di sonnolenza. Infatti, essa potrebbe riflettere la presenza di porzioni di corteccia in stato di sonno, ma durante lo stato di veglia; 3) Difendere il criterio biologico di identit\ue0, che troverebbe nell\u2019attivit\ue0 cerebrale la continuit\ue0 necessaria al mantenimento della nostra identit\ue0 nel tempo.Sleep and wakefulness are considered two mutually exclusive states. The alternation between those two states seems to be a defining characteristic of our life, a ubiquitous phenomenon demonstrated in every animal species investigated so far. However, during the last decade, advances in neurophysiology have blurred the boundaries between those states. The mechanisms of sleep have always intrigued neurophysiologists and great advances have been made over the last century in understanding them: we now know that the defining characteristic underlying sleep activity is a specific pattern of neuronal activity, namely the slow oscillation. The slow oscillation, which is characterized by the periodic alternation between periods of activity (ON-periods) and periods of hyperpolarization and neuronal silence (OFF-periods) is the default mode of activity of the sleeping cortex. This alternation is due to the tendency of neurons to fall into a silent period after an initial activation; such tendency is known as \u201cbistability\u201d. There is accumulating evidence that sleep-like bistability, and the ensuing OFF-periods, may occur locally in the awake human brain in some pathological conditions, in sleep transition, as well as after sleep deprivation. Therefore, to the extent that bistability and OFF periods represents the basic neuronal features of sleep, a paradigm shift is in place: from a neurophysiological perspective sleep can intrude into wakefulness. In this thesis, I explore the fluid boundaries between sleep and wakefulness and investigate their possible implications on the problem of personal persistence over time. Moreover, I study the clinical implications of the intrusion of sleep into wakefulness in patients with focal brain injury due to stroke. Specifically, I aim to: 1) show how the sleep-like bistability can be responsible for the loss of function in stroke patients. This may have implications for understanding the pathophysiology of stroke and helping to foster recovery; 2) establish the basis for a model of local sleep that might be present in the everyday life, id est the sensation of sleepiness. Indeed, sleepiness could reflect islands of sleep during wakefulness; 3) advocate the biological criterion of identity, in which the continuity necessary for maintaining ourselves over time could be represented by never resting activity in the brain

    How can I investigate causal brain networks with iEEG?

    Full text link
    While many human imaging methodologies probe the structural and functional connectivity of the brain, techniques to investigate cortical networks in a causal and directional manner are critical but limited. The use of iEEG enables several approaches to directly characterize brain regions that are functionally connected and in some cases also establish directionality of these connections. In this chapter we focus on the basis, method and application of the cortico-cortical evoked potential (CCEP), whereby electrical pulses applied to one set of intracranial electrodes yields an electrically-induced brain response at local and remote regions. In this chapter, CCEPs are first contextualized within common brain connectivity methods used to define cortical networks and how CCEP adds unique information. Second, the practical and analytical considerations when using CCEP are discussed. Third, we review the neurophysiology underlying CCEPs and the applications of CCEPs including exploring functional and pathological brain networks and probing brain plasticity. Finally, we end with a discussion of limitations, caveats, and directions to improve CCEP utilization in the future.Comment: Forthcoming chapter in "Intracranial EEG for Cognitive Neuroscience
    corecore