74 research outputs found

    Bisimulations and Unfolding in P-Accessible Categorical Models

    Get PDF
    In this paper, we propose a categorical framework for bisimulations and unfoldings that unifies the classical approach from Joyal and al. via open maps and unfoldings. This is based on a notion of categories accessible with respect to a subcategory of path shapes, i.e., for which one can define a nice notion of trees as glueing of paths. We prove that transitions systems and pre sheaf models are a particular case of our framework. We also prove that in our framework, several characterizations of bisimulation coincide, in particular an "operational one" akin to the standard definition in transition systems. Also, accessibility is preserved by coreflexions. We then design a notion of unfolding, which has good properties in the accessible case: its is a right adjoint and is a universal covering, i.e., initial among the morphisms that have the unique lifting property with respect to path shapes. As an application, we prove that the universal covering of a groupoid, a standard construction in algebraic topology, coincides with an unfolding, when the category of path shapes is well chosen

    A coalgebraic semantics for causality in Petri nets

    Get PDF
    In this paper we revisit some pioneering efforts to equip Petri nets with compact operational models for expressing causality. The models we propose have a bisimilarity relation and a minimal representative for each equivalence class, and they can be fully explained as coalgebras on a presheaf category on an index category of partial orders. First, we provide a set-theoretic model in the form of a a causal case graph, that is a labeled transition system where states and transitions represent markings and firings of the net, respectively, and are equipped with causal information. Most importantly, each state has a poset representing causal dependencies among past events. Our first result shows the correspondence with behavior structure semantics as proposed by Trakhtenbrot and Rabinovich. Causal case graphs may be infinitely-branching and have infinitely many states, but we show how they can be refined to get an equivalent finitely-branching model. In it, states are equipped with symmetries, which are essential for the existence of a minimal, often finite-state, model. The next step is constructing a coalgebraic model. We exploit the fact that events can be represented as names, and event generation as name generation. Thus we can apply the Fiore-Turi framework: we model causal relations as a suitable category of posets with action labels, and generation of new events with causal dependencies as an endofunctor on this category. Then we define a well-behaved category of coalgebras. Our coalgebraic model is still infinite-state, but we exploit the equivalence between coalgebras over a class of presheaves and History Dependent automata to derive a compact representation, which is equivalent to our set-theoretical compact model. Remarkably, state reduction is automatically performed along the equivalence.Comment: Accepted by Journal of Logical and Algebraic Methods in Programmin

    Tree morphisms and bisimulations

    Get PDF
    A category of (action labelled) trees is defined that can be used to model unfolding of labelled transition systems and to study behavioural relations over them. In this paper we study five different equivalences based on bisimulation for our model. One, that we called resource bisimulation, amounts essentially to three isomorphism. Another, its weak counterpart, permits abstracting from silent actions while preserving the tree structure. The other three are the well known strong, branching and weak bisimulation equivalence. For all bisimulations, but weak, canonical representatives are constructed and it is shown that they can be obtained via enriched functors over our categories of trees, with and without silent actions. Weak equivalence is more problematic; a canonical minimal representative for it cannot be denned by quotienting our trees. The common framework helps in understanding the relationships between the various equivalences and the results provide support to the claim that branching bisimulation is the natural generalization of strong bisimulation to systems with silent moves and that resource and weak resource have an interest of their own

    A Definition Scheme for Quantitative Bisimulation

    Get PDF
    FuTS, state-to-function transition systems are generalizations of labeled transition systems and of familiar notions of quantitative semantical models as continuous-time Markov chains, interactive Markov chains, and Markov automata. A general scheme for the definition of a notion of strong bisimulation associated with a FuTS is proposed. It is shown that this notion of bisimulation for a FuTS coincides with the coalgebraic notion of behavioral equivalence associated to the functor on Set given by the type of the FuTS. For a series of concrete quantitative semantical models the notion of bisimulation as reported in the literature is proven to coincide with the notion of quantitative bisimulation obtained from the scheme. The comparison includes models with orthogonal behaviour, like interactive Markov chains, and with multiple levels of behavior, like Markov automata. As a consequence of the general result relating FuTS bisimulation and behavioral equivalence we obtain, in a systematic way, a coalgebraic underpinning of all quantitative bisimulations discussed.Comment: In Proceedings QAPL 2015, arXiv:1509.0816

    Petri Nets and Other Models of Concurrency

    No full text
    This paper retraces, collects, and summarises contributions of the authors --- in collaboration with others --- on the theme of Petri nets and their categorical relationships to other models of concurrency

    A network-conscious π-calculus and its coalgebraic semantics

    Get PDF
    Traditional process calculi usually abstract away from network details, modeling only communication over shared channels. They, however, seem inadequate to describe new network architectures, such as Software Defined Networks, where programs are allowed to manipulate the infrastructure. In this paper we present the Network Conscious @p-calculus ( NCPi), a proper extension of the @p-calculus with an explicit notion of network: network links and nodes are represented as names, in full analogy with ordinary @p-calculus names, and observations are routing paths through which data is transported. However, restricted links do not appear in the observations, which thus can possibly be as abstract as in the @p-calculus. Then we construct a presheaf-based coalgebraic semantics for NCPi along the lines of Turi-Plotkin's approach, by indexing processes with the network resources they use: we give a model for observational equivalence in this context, and we prove that it admits an equivalent nominal automaton (HD-automaton), suitable for verification. Finally, we give a concurrent semantics for NCPi where observations are multisets of routing paths. We show that bisimilarity for this semantics is a congruence, and this property holds also for the concurrent version of the @p-calculus

    A Network-Aware Process Calculus for Global Computing and its Categorical Framework

    Get PDF
    An essential aspect of distributed systems is resource management, concerning how resources can be accessed and allocated. This aspect should also be taken into account when modeling and verifying such systems. A class of formalisms with the desired features are nominal calculi: they represent resources as atomic objects called names and have linguistic constructs to express creation of new resources. The paradigmatic nominal calculus is the π-calculus, which is well-studied and comes with models and logics. The first objective of this thesis is devising a natural and seamless extension of the π-calculus where resources are network nodes and links. The motivation is provided by a recent, successful networking paradigm called Software Defined Networks, which allows the network structure to be manipulated at runtime via software. We devise a new calculus called Network Conscious π-calculus (NCPi), where resources, namely nodes and links, are represented as names, following the π-calculus guidelines. This allows NCPi to reuse the π-calculus name-handling machinery. The semantics allows observing end-to-end routing behavior, in the form of routing paths through the network. As in the π-calculus, bisimilarity is not closed under input prefix. Interestingly, closure under parallel composition does not hold either. Taking the greatest bisimulation closed under all renamings solves the issue only for the input prefix. We conjecture that such closure yields a full congruence for the subcalculus with only guarded sums. We introduce an extension of NCPi (κNCPi) with some features that makes it closer to real-life routing. Most importantly, we add concurrency, i.e. multiple paths can be observed at the same time. Unlike the sequential version, bisimilarity is a congruence from the very beginning, due to the richer observations, so κNCPi can be considered the “right” version of NCPi when compositionality is needed. This extended calculus is used to model the peer- to-peer architecture Pastry. The second objective is constructing a convenient operational model for NCPi. We consider coalgebras, that are categorical representation of system. Coalgebras have been studied in full generality, regardless of the specific structure of systems, and algorithms and logics have been developed for them. This allows for the application of general results and techniques to a variety of systems. The main difficulty in the coalgebraic treatment of nominal calculi is the presence of name binding: it introduces α-conversion and makes SOS rules and bisimulations non-standard. The consequence is that coalgebras on sets are not able to capture these notions. The idea of the seminal paper by Fiore and Turi is resorting to coalgebras on presheaves, i.e. functors C → Set. Intuitively, presheaves allow associating to collections of names, seen as objects of C, the set of processes using those names. Fresh names generation strategies can be formalized as endofunctors on C, which are lifted to presheaves in a standard way and used to model name binding. Within this framework, a coalgebra for the π-calculus transition system is constructed: the benefit is that ordinary coalgebraic bisimulations for such coalgebra are π-calculus bisimulations. Moreover, Fiore and Turi show a technique to obtain a new coalgebra whose bisimilarity is closed under all renamings. This relation is a congruence for the π-calculus. Presheaves come with a rich theory that can help deriving new results, but coalgebras on presheaves are impractical to implement: the state space can be infinite, for instance when a process recursively creates names. However, if we restrict to a class of presheaves (according to Ciancia et al.), coalgebras admit a concrete implementation in terms of HD-automata, that are finite-state automata suitable for verification. In this thesis we adapt and extend Fiore-Turi’s approach to cope with network resources. First we provide a coalgebraic semantics for NCPi whose bisimulations are bisimulations in the NCPi sense. Then we compute coalgebras and equivalences that are closed under all renamings. The greatest such equivalence is a congruence w.r.t. the input prefix and we conjecture that, for the NCPi with only guarded sums, it is a congruence also w.r.t. parallel composition. We show that this construction applies a form of saturation. Then we prove the existence of a HD-automaton for NCPi. The treatment of network resources is non-trivial and paves the way to modeling other calculi with complex resources
    • …
    corecore