10,275 research outputs found

    SOS rule formats for convex and abstract probabilistic bisimulations

    Full text link
    Probabilistic transition system specifications (PTSSs) in the ntΟfθ/ntΟxθnt \mu f\theta / nt\mu x\theta format provide structural operational semantics for Segala-type systems that exhibit both probabilistic and nondeterministic behavior and guarantee that bisimilarity is a congruence for all operator defined in such format. Starting from the ntΟfθ/ntΟxθnt \mu f\theta / nt\mu x\theta format, we obtain restricted formats that guarantee that three coarser bisimulation equivalences are congruences. We focus on (i) Segala's variant of bisimulation that considers combined transitions, which we call here "convex bisimulation"; (ii) the bisimulation equivalence resulting from considering Park & Milner's bisimulation on the usual stripped probabilistic transition system (translated into a labelled transition system), which we call here "probability obliterated bisimulation"; and (iii) a "probability abstracted bisimulation", which, like bisimulation, preserves the structure of the distributions but instead, it ignores the probability values. In addition, we compare these bisimulation equivalences and provide a logic characterization for each of them.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634

    Equivalence of switching linear systems by bisimulation

    Get PDF
    A general notion of hybrid bisimulation is proposed for the class of switching linear systems. Connections between the notions of bisimulation-based equivalence, state-space equivalence, algebraic and input–output equivalence are investigated. An algebraic characterization of hybrid bisimulation and an algorithmic procedure converging in a finite number of steps to the maximal hybrid bisimulation are derived. Hybrid state space reduction is performed by hybrid bisimulation between the hybrid system and itself. By specializing the results obtained on bisimulation, also characterizations of simulation and abstraction are derived. Connections between observability, bisimulation-based reduction and simulation-based abstraction are studied.\ud \u

    Abstractions of Stochastic Hybrid Systems

    Get PDF
    In this paper we define a stochastic bisimulation concept for a very general class of stochastic hybrid systems, which subsumes most classes of stochastic hybrid systems. The definition of this bisimulation builds on the concept of zigzag morphism defined for strong Markov processes. The main result is that this stochastic bisimulation is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures

    Distribution-based bisimulation for labelled Markov processes

    Full text link
    In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.Comment: Accepted by FORMATS 201

    Generalized Vietoris Bisimulations

    Full text link
    We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [4]. The main result of our paper is that bisimulation for a Stone\mathbf{Stone} coalgebra is the topological closure of bisimulation for the underlying Set\mathbf{Set} coalgebra

    Reverse Bisimulations on Stable Configuration Structures

    Full text link
    The relationships between various equivalences on configuration structures, including interleaving bisimulation (IB), step bisimulation (SB) and hereditary history-preserving (HH) bisimulation, have been investigated by van Glabbeek and Goltz (and later Fecher). Since HH bisimulation may be characterised by the use of reverse as well as forward transitions, it is of interest to investigate forms of IB and SB where both forward and reverse transitions are allowed. We give various characterisations of reverse SB, showing that forward steps do not add extra power. We strengthen Bednarczyk's result that, in the absence of auto-concurrency, reverse IB is as strong as HH bisimulation, by showing that we need only exclude auto-concurrent events at the same depth in the configuration

    Towards sharing in lazy computation systems

    Get PDF
    Work on proving congruence of bisimulation in functional programming languages often refers to [How89,How96], where Howe gave a highly general account on this topic in terms of so-called lazy computation systems . Particularly in implementations of lazy functional languages, sharing plays an eminent role. In this paper we will show how the original work of Howe can be extended to cope with sharing. Moreover, we will demonstrate the application of our approach to the call-by-need lambda-calculus lambda-ND which provides an erratic non-deterministic operator pick and a non-recursive let. A definition of a bisimulation is given, which has to be based on a further calculus named lambda-~, since the na1ve bisimulation definition is useless. The main result is that this bisimulation is a congruence and contained in the contextual equivalence. This might be a step towards defining useful bisimulation relations and proving them to be congruences in calculi that extend the lambda-ND-calculus
    • …
    corecore