584 research outputs found

    Generalized Vietoris Bisimulations

    Full text link
    We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [4]. The main result of our paper is that bisimulation for a Stone\mathbf{Stone} coalgebra is the topological closure of bisimulation for the underlying Set\mathbf{Set} coalgebra

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    Formalising the pi-calculus using nominal logic

    Get PDF
    We formalise the pi-calculus using the nominal datatype package, based on ideas from the nominal logic by Pitts et al., and demonstrate an implementation in Isabelle/HOL. The purpose is to derive powerful induction rules for the semantics in order to conduct machine checkable proofs, closely following the intuitive arguments found in manual proofs. In this way we have covered many of the standard theorems of bisimulation equivalence and congruence, both late and early, and both strong and weak in a uniform manner. We thus provide one of the most extensive formalisations of a process calculus ever done inside a theorem prover. A significant gain in our formulation is that agents are identified up to alpha-equivalence, thereby greatly reducing the arguments about bound names. This is a normal strategy for manual proofs about the pi-calculus, but that kind of hand waving has previously been difficult to incorporate smoothly in an interactive theorem prover. We show how the nominal logic formalism and its support in Isabelle accomplishes this and thus significantly reduces the tedium of conducting completely formal proofs. This improves on previous work using weak higher order abstract syntax since we do not need extra assumptions to filter out exotic terms and can keep all arguments within a familiar first-order logic.Comment: 36 pages, 3 figure

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Abella: A System for Reasoning about Relational Specifications

    Get PDF
    International audienceThe Abella interactive theorem prover is based on an intuitionistic logic that allows for inductive and co-inductive reasoning over relations. Abella supports the λ-tree approach to treating syntax containing binders: it allows simply typed λ-terms to be used to represent such syntax and it provides higher-order (pattern) unification, the ∇ quantifier, and nominal constants for reasoning about these representations. As such, it is a suitable vehicle for formalizing the meta-theory of formal systems such as logics and programming languages. This tutorial exposes Abella incrementally, starting with its capabilities at a first-order logic level and gradually presenting more sophisticated features, ending with the support it offers to the two-level logic approach to meta-theoretic reasoning. Along the way, we show how Abella can be used prove theorems involving natural numbers, lists, and automata, as well as involving typed and untyped λ-calculi and the π-calculus

    Bisimulation of Labelled State-to-Function Transition Systems Coalgebraically

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, are characterized by transitions which relate states to functions of states over general semirings, equipped with a rich set of higher-order operators. As such, FuTS constitute a convenient modeling instrument to deal with process languages and their quantitative extensions in particular. In this paper, the notion of bisimulation induced by a FuTS is addressed from a coalgebraic point of view. A correspondence result is established stating that FuTS-bisimilarity coincides with behavioural equivalence of the associated functor. As generic examples, the equivalences underlying substantial fragments of major examples of quantitative process algebras are related to the bisimilarity of specific FuTS. The examples range from a stochastic process language, PEPA, to a language for Interactive Markov Chains, IML, a (discrete) timed process language, TPC, and a language for Markov Automata, MAL. The equivalences underlying these languages are related to the bisimilarity of their specific FuTS. By the correspondence result coalgebraic justification of the equivalences of these calculi is obtained. The specific selection of languages, besides covering a large variety of process interaction models and modelling choices involving quantities, allows us to show different classes of FuTS, namely so-called simple FuTS, combined FuTS, nested FuTS, and general FuTS
    • …
    corecore