91 research outputs found

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Distributed Markovian Bisimulation Reduction aimed at CSL Model Checking

    Get PDF
    The verification of quantitative aspects like performance and dependability by means of model checking has become an important and vivid area of research over the past decade.\ud \ud An important result of that research is the logic CSL (continuous stochastic logic) and its corresponding model checking algorithms. The evaluation of properties expressed in CSL makes it necessary to solve large systems of linear (differential) equations, usually by means of numerical analysis. Both the inherent time and space complexity of the numerical algorithms make it practically infeasible to model check systems with more than 100 million states, whereas realistic system models may have billions of states.\ud \ud To overcome this severe restriction, it is important to be able to replace the original state space with a probabilistically equivalent, but smaller one. The most prominent equivalence relation is bisimulation, for which also a stochastic variant exists (Markovian bisimulation). In many cases, this bisimulation allows for a substantial reduction of the state space size. But, these savings in space come at the cost of an increased time complexity. Therefore in this paper a new distributed signature-based algorithm for the computation of the bisimulation quotient of a given state space is introduced.\ud \ud To demonstrate the feasibility of our approach in both a sequential, and more important, in a distributed setting, we have performed a number of case studies

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions

    Extending the Logic IM-SPDL with Impulse and State Rewards

    Get PDF
    This report presents the logic SDRL (Stochastic Dynamic Reward Logic), an extension of the stochastic logic IM-SPDL, which supports the specication of complex performance and dependability requirements. SDRL extends IM-SPDL with the possibility to express impulse- and state reward measures.\ud The logic is interpreted over extended action-based Markov reward model (EMRM), i.e. transition systems containing both immediate and Markovian transitions, where additionally the states and transitions can be enriched with rewards.\ud We define ne the syntax and semantics of the new logic and show that SDRL provides powerful means to specify path-based properties with timing and reward-based restrictions.\ud In general, paths can be characterised by regular expressions, also called programs, where the executability of a program may depend on the validity of test formulae. For the model checking of SDRL time- and reward-bounded path formulae, a deterministic program automaton is constructed from the requirement. Afterwards the product transition\ud system between this automaton and the EMRM is built and subsequently transformed into a continuous time Markov reward model (MRM) on which numerical\ud analysis is performed.\u

    On the use of MTBDDs for performability analysis and verification of stochastic systems

    Get PDF
    AbstractThis paper describes how to employ multi-terminal binary decision diagrams (MTBDDs) for the construction and analysis of a general class of models that exhibit stochastic, probabilistic and non-deterministic behaviour. It is shown how the notorious problem of state space explosion can be circumvented by compositionally constructing symbolic (i.e. MTBDD-based) representations of complex systems from small-scale components. We emphasise, however, that compactness of the representation can only be achieved if heuristics are applied with insight into the structure of the system under investigation. We report on our experiences concerning compact representation, performance analysis and verification of performability properties

    Transient Reward Approximation for Continuous-Time Markov Chains

    Full text link
    We are interested in the analysis of very large continuous-time Markov chains (CTMCs) with many distinct rates. Such models arise naturally in the context of reliability analysis, e.g., of computer network performability analysis, of power grids, of computer virus vulnerability, and in the study of crowd dynamics. We use abstraction techniques together with novel algorithms for the computation of bounds on the expected final and accumulated rewards in continuous-time Markov decision processes (CTMDPs). These ingredients are combined in a partly symbolic and partly explicit (symblicit) analysis approach. In particular, we circumvent the use of multi-terminal decision diagrams, because the latter do not work well if facing a large number of different rates. We demonstrate the practical applicability and efficiency of the approach on two case studies.Comment: Accepted for publication in IEEE Transactions on Reliabilit

    A survey of the PEPA tools

    Get PDF
    This paper surveys the history and the current state of tool support for modelling with the PEPA stochastic process algebra and the PEPA nets modelling language. We discuss future directions for tool support for the PEPA family of languages.
    corecore