21 research outputs found

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    On the existence of combinatorial configurations

    Get PDF
    A (v, b, r, k) combinatorial configuration can be defined as a connected, (r, k)-biregular bipartite graph with v vertices on one side and b vertices on the other and with no cycle of length 4. Combinatorial configurations have become very important for some cryptographic applications to sensor networks and to peer-to-peer communities. Configurable tuples are those tuples (v, b, r, k) for which a (v, b, r, k) combinatorial configuration exists. It is proved in this work that the set of configurable tuples with fixed r and k has the structure of a numerical semigroup. The semigroup is completely described whenever r = 2 or r = 3. For the remaining cases some bounds are given on the multiplicity and the conductor of the numerical semigroup. This leads to some concluding results on the existence of configurable tuples.Peer Reviewe

    Bounds for graphs of given girth and generalized polygons

    No full text
    In this paper we present a bound for bipartite graphs with average bidegrees η and ξ satisfying the inequality η ≥ ξ α, α ≥ 1. This bound turns out to be the sharpest existing bound. Sizes of known families of finite generalized polygons are exactly on that bound. Finally, we present lower bounds for the numbers of points and lines of biregular graphs (tactical configurations) in terms of their bidegrees. We prove that finite generalized polygons have smallest possible order among tactical configuration of given bidegrees and girth. We also present an upper bound on the size of graphs of girth g ≥ 2t + 1. This bound has the same magnitude as that of Erd¨os bound, which estimates the size of graphs without cycles C₂t
    corecore