1,975 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning

    Get PDF
    Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis – particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species

    Data-Efficient Classification of Birdcall Through Convolutional Neural Networks Transfer Learning

    Full text link
    Deep learning Convolutional Neural Network (CNN) models are powerful classification models but require a large amount of training data. In niche domains such as bird acoustics, it is expensive and difficult to obtain a large number of training samples. One method of classifying data with a limited number of training samples is to employ transfer learning. In this research, we evaluated the effectiveness of birdcall classification using transfer learning from a larger base dataset (2814 samples in 46 classes) to a smaller target dataset (351 samples in 10 classes) using the ResNet-50 CNN. We obtained 79% average validation accuracy on the target dataset in 5-fold cross-validation. The methodology of transfer learning from an ImageNet-trained CNN to a project-specific and a much smaller set of classes and images was extended to the domain of spectrogram images, where the base dataset effectively played the role of the ImageNet.Comment: Accepted for IEEE Digital Image Computing: Techniques and Applications, 2019 (DICTA 2019), 2-4 December 2019 in Perth, Australia, http://dicta2019.dictaconference.org/index.htm

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Robust cepstral feature for bird sound classification

    Get PDF
    Birds are excellent environmental indicators and may indicate sustainability of the ecosystem; birds may be used to provide provisioning, regulating, and supporting services. Therefore, birdlife conservation-related researches always receive centre stage. Due to the airborne nature of birds and the dense nature of the tropical forest, bird identifications through audio may be a better solution than visual identification. The goal of this study is to find the most appropriate cepstral features that can be used to classify bird sounds more accurately. Fifteen (15) endemic Bornean bird sounds have been selected and segmented using an automated energy-based algorithm. Three (3) types of cepstral features are extracted; linear prediction cepstrum coefficients (LPCC), mel frequency cepstral coefficients (MFCC), gammatone frequency cepstral coefficients (GTCC), and used separately for classification purposes using support vector machine (SVM). Through comparison between their prediction results, it has been demonstrated that model utilising GTCC features, with 93.3% accuracy, outperforms models utilising MFCC and LPCC features. This demonstrates the robustness of GTCC for bird sounds classification. The result is significant for the advancement of bird sound classification research, which has been shown to have many applications such as in eco-tourism and wildlife management

    Stock Price Prediction using Deep Learning

    Get PDF
    Stock price prediction is one among the complex machine learning problems. It depends on a large number of factors which contribute to changes in the supply and demand. This paper presents the technical analysis of the various strategies proposed in the past, for predicting the price of a stock, and evaluation of a novel approach for the same. Stock prices are represented as time series data and neural networks are trained to learn the patterns from trends. Along with the numerical analysis of the stock trend, this research also considers the textual analysis of it by analyzing the public sentiment from online news sources and blogs. Utilizing both this information, a merged hybrid model is built which can predict the stock trend more accurately
    • 

    corecore