5 research outputs found

    Siirtoliipaisuarkkitehtuurin muuttuvanmittaisten käskyjen pakkaus

    Get PDF
    The Static Random-Access Memory (SRAM) modules used for embedded microprocessor devices consume a large portion of the whole system’s power. The memory module consumes static power on keeping awake and dynamic power on memory accesses. The power dissipation of the instruction memory can be limited by using code compression methods, which reduce the memory size. The compression may require the use of variable length instruction formats in the processor. The power-efficient design of variable length instruction fetch and decode units is challenging for static multiple-issue processors, because such architectures have simple hardware to begin with, as they aim for very low power consumption on embedded platforms. The power saved by using these compression approaches, which necessitate more complex logic, is easily lost on inefficient processor design. This thesis proposes an implementation for instruction template-based compression, its decompression and two instruction fetch design alternatives for variable length instruction encoding on Transport Triggered Architecture (TTA), a static multiple-issue exposed data path architecture. Both of the new fetch and decode units are integrated into the TTA-based Co-design Environment (TCE), which is a toolset for rapid designing and prototyping of processors based on TTA. The hardware description of the fetch units is verified on a register transfer level and benchmarked using the CHStone test suite. Furthermore, the fetch units are synthesized on a 40 nm standard cell Application Specific Integrated Circuit (ASIC) technology library for area, performance and power consumption measurements. The power cost of the variable length instruction support is compared to the power savings from memory reduction, which is evaluated using HP Labs’ CACTI tool. The compression approach reaches an average program size reduction of 44% at best with a set of test programs, and the total power consumption of the system is reduced. The thesis shows that the proposed variable length fetch designs are sufficiently low-power oriented for TTA processors to benefit from the code compression

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Depth-based Multi-View 3D Video Coding

    Get PDF

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc
    corecore