28 research outputs found

    Bipartite partial duals and circuits in medial graphs

    Full text link
    It is well known that a plane graph is Eulerian if and only if its geometric dual is bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric

    Partial duals of plane graphs, separability and the graphs of knots

    Full text link
    There is a well-known way to describe a link diagram as a (signed) plane graph, called its Tait graph. This concept was recently extended, providing a way to associate a set of embedded graphs (or ribbon graphs) to a link diagram. While every plane graph arises as a Tait graph of a unique link diagram, not every embedded graph represents a link diagram. Furthermore, although a Tait graph describes a unique link diagram, the same embedded graph can represent many different link diagrams. One is then led to ask which embedded graphs represent link diagrams, and how link diagrams presented by the same embedded graphs are related to one another. Here we answer these questions by characterizing the class of embedded graphs that represent link diagrams, and then using this characterization to find a move that relates all of the link diagrams that are presented by the same set of embedded graphs.Comment: v2: major change

    Partial duality of hypermaps

    Full text link
    We introduce a collection of new operations on hypermaps, partial duality, which include the classical Euler-Poincar\'e dualities as particular cases. These operations generalize the partial duality for maps, or ribbon graphs, recently discovered in a connection with knot theory. Partial duality is different from previous studied operations of S. Wilson, G. Jones, L. James, and A. Vince. Combinatorially hypermaps may be described in one of three ways: as three involutions on the set of flags (τ\tau-model), or as three permutations on the set of half-edges (σ\sigma-model in orientable case), or as edge 3-colored graphs. We express partial duality in each of these models.Comment: 19 pages, 16 figure

    Delta-matroids for graph theorists

    Get PDF

    On the interplay between embedded graphs and delta-matroids

    Get PDF
    The mutually enriching relationship between graphs and matroids has motivated discoveries in both fields. In this paper, we exploit the similar relationship between embedded graphs and delta-matroids. There are well-known connections between geometric duals of plane graphs and duals of matroids. We obtain analogous connections for various types of duality in the literature for graphs in surfaces of higher genus and delta-matroids. Using this interplay, we establish a rough structure theorem for delta-matroids that are twists of matroids, we translate Petrie duality on ribbon graphs to loop complementation on delta-matroids, and we prove that ribbon graph polynomials, such as the Penrose polynomial, the characteristic polynomial, and the transition polynomial, are in fact delta-matroidal. We also express the Penrose polynomial as a sum of characteristic polynomials
    corecore